
1 ~PB88 -232582 --

l~lllll/11111111111111111111111 _ --~ _j
Publication No. FHWA/RD-87 /044

December ·1937

Reference Manual for
the UMTRI/FHWA Road

Profiling (PRORUT) System

-,

,,,---- ----- ------- -· -----------·------
(

i

f'J I, (REPRODUCED BY, -dl-.J
"---- ·~-----------~- , U.S.Depa~entofCo~merce

U S Depa li ·l National Teehn••.cal _Information Service , , rtrnent Qf ransportation Springfie\d, Wginia 221'1

Federal Highway Administration ---

Research, Development, and Technology

Turner-Fairbank Highway Research Ce,nter

ld00 Ceorgdown Pike, Mcl.ean, Va 22701-2296

FOREWORD

Two methods are available for measuring road roughness for pavement condition
surveys. Both can be used at highway speeds without interfering with traffic.
One method uses Response Type Road Roughness Measuring (RTRRM) systems. This
method measures the response of an instrumented car or trailer to road roughness.
The response depends 'on the vehicle, its condition. and the speed of measurement.
The second method measures the roadway profile, independent of the vehicle and
operating conditions, RTRRM systems are widely used because the equipment is
inexpensive. However, RTRRM systems require frequent calibrations, and the
measurement depends on many factors difficult to control.

Road roughness profiling is preferable to response type measurements. The
roughness profile can be obtained with sufficient accuracy and reliability. The
recorded profile can be used for calculating rideability, for calculating change
in PSI (Present Serviceability Index) over time, for calculating the amount of
overlay needed for resurfacing, for calibrating RTRRM systems, and more.

In recent years, reliable non-contact height sensors have become available,
making profiling equipment attractive. Furthermore, the same _type of sensor can
be used for measuring rut depth. The PRORUT system developed for FWHA by the
University of Michigan provides an average rut depth by adding one height sensor
centered between the two sensors measuring the wheel tracks. The signal
processing and data analysis for profiles and rut depth are integrated. This
three-sensor system can be expanded by adding sensors to increase the accuracy
in measuring rut depth. However, the required accuracy depends on the use of
the data, and for most applications the average rut depth is probably adequate.

d~ ,t{ r1:!f __;:~1
~-~-(__Director, Office of Engineering v~ and Highway Operations

Research and Development

NOTICE

This document is disseminated under the sponsorship of the Department of
Transportation in the interest of information exchange. The United States
Government assumes no 11 ability for its con ten ts or use thereof. The con ten ts
of this report reflect the views of the contractor, who is responsible for the
accuracy of the data presented herein. The contents do not necessarily reflect
the official policy of the Department of Transportation. This report does not
constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade
or manufacturers' names appear herein only because they are considered essential
to the object of this document.

Technlcal Report Documentation Page
1. Report No. i. Govemmenl Acc:eulon No. 3. Redplenl'• c1:talog No.

FHW A/RD-87 /044 Pf88 2 32 5 8 2/AS
4. Title and SubUU. 5. Report Dai.

REFERENCE MANUAL FOR THE UMTRI/FHW A December 1987

ROAD PROFil..ING (PRORUT) SYSTEM 6. Perfomlng Oraenlzatlon Code

8. Performing Organization Report No,
. 7. Aulllofio)

UMTRI-87-5 M. R. Hagiµt and M.W. Sayers
II. Perlonnlng OrgonlU11on Name and AddrH• 10. Worll Unh No. (TRI.IS)

The University of Michigan 31W3-1'162
11, Contract or Grant No. Transportation Research Institute

48109
DTFH6 l-83-C-OO 123

2901 Baxter Road, Ann Arbor, Michigan 13. ,Type of Report and Period Covered

12- Bponaorlng Agency Name and Adclnu Final
Federal Highway Administration 9/83 - 1/87
U.S. Department of Transportation
Washington, D. C. 20590

14. Sponoorlng Agency Co<le

15. uupplomentary No .. •

, Contract Technical Representative: Dr. R.R. Hegmon . ,,

l
111. Abelnct ,.

JThe objectives of this project were to assess the capabilities that are needed in a road
profilometer and develop a design tailored to minimize life costs of the system. This led
to the development of a system based on the IBM PC microcomputer. With the exception
of a signal-conditioning unit, the system is constructed from commercial components. The
software controls the measurement of road profile and rut depth, the viewing of the data,
and daily checks of the hardware integrity. This document is the reference manual for the
profilometer-presently known as the PRORUT system. The manual is intended to
document the software and hardware components of the system, and is of special interest to
the technical staff responsible for maintenance, repair, or modification of the system when
required. -· --

There are three companion reports prepared as part of the same project. One gives an
overview of the project (FHW A/RD-87/042), a.nether is the PRORUT User's manual
(FHW A/RD-87/043), and the third describes the validation of the FHW A profilometer
along with other profilometers at a profilometer meeting (FHW A/RD-86/100). ,,..- . ..

. --;:-__.

:/"
~

'
17. i<.y Ward■ 11. DlolrlbuUon St■ .. mont

longitudinal profile, profilometer, road No restrictions. This document is available
roughness, quarter-car, digital data to the public through the National Technical
acquisition systems, IBM PC, rut depth, Information Service, Springfield, VA 22161
road profile

19, Security. CluoH. (of thlo report) 20. Security Cluall. (ol 11110 page) 21. No. of P•a•• :t2.. Prlca

Unclassified Unclassified 30'~

\
\

TABLE OF CONTENTS

Section Page

INTRODUCTION.. 1 . .

HARDWARE : .. , 3

The Computer System... 3
Transducers... 5

Analog Signal-Conditioning Unit . 6

Calibration IBM Interface Card : ... 18

Exercisi~g the Hardware Using Software ... 20

DATA COLLECTION ... 25

Sampling a Single Channel Using Direct ~emory Access . (DMA) ••.••.•...•..• 25

Intenupt-Driven Sampling of Multiple Channels .. 25
Sampling Multiple Channels Using DMA ••••••••• , •••••••• , ••••••• • • '. •• • , •• • 27

Valid Configurations : 29

COMPUTATION METHODS .. 32

Equations and Signal Processing. 32

Buffers and Memory Usage .. 39

DATA FILES ... 44

File Types. 44

File Structures .. 44

PRO FILO METER SUBROUTINES.. 51

Conventions.... 51

Common Blocks and Auxiliary Files.. 55

File Access.......... 67

Initialization........ 70
1/0 Subroutines ... 72

Plotting. 75
Printing. 81

Program Control... 83

Signal Processing .. 85

Test and Calibration.. 91

·ii

j
I

TABLE OF CONTENTS (continued)

Section Page

APPENDIX A: Schematics ... , 95

APPENDIX B: Cabling Information .. .110

APPENDIX C: Fortran Extensions ... : 118 ,

File Routines ... J 18
Integer Functions .. .125 ,
Screen UO Routines127
User Friendly Input. .. .129

Miscellaneous Routines ... 132

APPENDIX D: Program Source Listings ,. 137

REFERENCES ... 296

111

.LIST OF FIGURES

Figure Page

1. Overview of the hardware used in the profilometer : · 4

2. Photograph of the signal-conditioning unit backplane.............................. 7

3. Layout of the signal-conditioning unit backplane ; · ... ::.. 8

4. Photograph of a signal-conditioning card... 10

5. Block diagram for an analog signal-conditioning card.. 11

6. Example display showing setup data for the analog signal-conditioning cards... 12

7. Block diagram of the analog control card : :.......... 15

8. Block diagram of the velocity converter card ,................. 16

9. Functional diagram of the AID check card.-· . 17

10. Block diagram of the calibration IBM interface board ...•........ : .. , 19

11. Counter mode register bit assignments... 22

12. Timing diagram for the AID sequencer... 23

13. Timing diagrams for three methods of controlling sample rate . 26

14. Memory buffers used for collecting data... 28

15. Illustration of carryover byte between buffers when collecting data.............. 30

16. Schematic layout of transducers in the profilometer... 31

1 7. Definition of rut depth used in the profilometer.. 35

18. Buffers used by the s.ubroutine PRFCMP.. 40

19. Memory for plotting elevation filtered with moving average .. :... 42

20. Tape space requirements for ten transducer configurations........................ 46

21. Relation between longitudinal distance and sample number........................ 48

22. Schematic of the signal-conditioning unit backplane transducer wiring. 97

23. Schematic of an analog signal-conditioning card.................................... 99

24. Schematic of a filter card... 101

25. Schematic of the analog control card.. 102

26. Schematic of the velocity-converter card... 103

2 7. Schematic of the AID check card... 104

28. Schematic of the pull-up card.. 105

2 9. Schematic of the calibration IBM interface card (part 1 of 4)....... 106

30. Schematic of the calibration IBM interface card (part 2 of 4)...................... 107

iv

LIST OF FIGURES (Continued)

Figure Page

31. Schematic of the calibration IBM interface card (part 3 of 4).. 108

32. Schematic of the calibration IBM interface card (part 4 of 4)...................... 109

33. Cable diagram of the calibration control wiring (part 1 of 2) ,......... 111

34. Cable diagram of the calibration control wiring (part 2 of 2)....................... 112

3S. Cable diagram of the calibration IBM interface card DIP jumper wiring......... 113

36. Cable diagram of the AID clock and DI A wiring..................................... 113

3 7. Cable diagram of the AID wiring........ 114

38. Cable diagram of the test jack wiring... 115

3 9. Cable diagram of the velocity wiring. 116

40. Cable diagram of the accelerometer and height sensor wiring..................... 117

V

LIST OF TABLES

Table , Page.·.·

1. Counter usage summary ; , ; 21

2. List of all Fortran subroutines used with the profilometer ; . . · · 52

3. List of auxiliary files needed by the profilometer software................. 56

4. Map showing the usage of include files.. 58

5. Variables from the HANDLES include file... 61

6. Definitions of the 1/0 parameters from the IOP ARMS include file................ 62

7. Variables stored in the SETCOM common block and include file , 63

8. Equivalences used for the SET variables : ,... . . 66

9. Variables from the STATCOM include file... 68

10. Wiring list for the signal-conditioning unit backplane bus wiring................. 96

11. Wiring list for the signal-conditioning unit backplane control wiring............. 98

12. Headers for the analog signal-conditioning cards ·............ 100

13. Quick reference for the Fortran extensions library '. 119

14. Directory of source files for the profilometer software : , 138.

vi

INTRODUCTION
This manual describes the technical details of the hardware and software that comprise a

profiling and rut depth (PRORUT) measuring system that was designed and built by The
University of Michigan Transportation Research Institute (UMTRI) as a part of the FHW A
project "Methodology for Road Roughness Profiling and Rut Depth Measurement,"
Contract No. DTFH61-83-C-00123. The system is is simply called "the profilometer" in
this manual, although it is sometimes called the PRORUT in other documents. This
manual is part of a series of four reports dealing with the profilometer. The others are:.

• Methodology for Road Roughness Profiling and Rut Depth Measurement-a
summary report for the project under which the profilometer was designed and
built.Ul

• User's Manual for the UMTRIIFHWA Road Profiling (PRORUT) System-the
instruction manual for operating the systemJ2J

• The Ann Arbor Profilo~rer Meeting-a report that describes some of the testing
and analysis methods used in its development, along with validation resultsJ3J

The FHW A prof'tlometer is a digital data acquisition system based on an IBM PC
computer and 3M cartridge tape drive, with software that aids in the collection, processing,
and viewing of the data. It is built on the chassis of a 197 4 Dodge B300 van provided by
FHW A. In addition to the computer system, the hardware also includes transducers for
measuring the speed of travel, vertical accelerations on the vehicle body above each
wheeltrack, and height above the road at the midpoint and in each wheeltrack. The
electronics system has provisions for two additional outboard road sensors so that rut depth
in the separate wheeltracks can be measured should additional sensors be installed.

The following section, "Hardware," describes the hardware components used in the
profilometer. Hardware designed at UMTRI is described in this section, schematics are
provided in appendix A, and cabling information is included in appendix B. Most of the
hardware components are commercially available, and detailed documentation for those
components is provided by the manufacturers.

The software for the computer system contains the following commercially available
elements:

• IBM DOS 2.1 .

• Microsoft Fortran (subset of Fortran 77).

• Halo Graphics Package (with Fortran drivers).

• UMTRI Fortran Library.

The rest of the software is written in Fortran to perform tasks that are specific to the
profilometer. The next four sections of this manual describe this software.

1

The section "Data Collection" describes the techniques used to control the hardware of
the system to collect data measured with the sensors on board the profilometer and record·
those measures on tape. Next, the section entitled "Computation Methods" describes the
numerical methods used to compute longitudinal profile, rut depth,and roughness fromithe
transducer signals. The section "Data Files" describes the structures of the files that are
created by the profilometer. The final section in the manual, "Profilometer Subroutines,"
lists all of the Fortran procedures that were written to perlorm the tasks described in the
preceding sections and in the users manual. Appendix C documents a library of Fortran
extensions that allows improved handling of files and the display screen. Appendix D
contains the source listings of the profilometer code.

2

HARDWARE
The FHW A profil~meter. is· a digital data acquisition system,. with appropriate

transducers, and software that aids in the collection, processing, and viewing of profile and
rut depth data. It is built on the chassis of a 1974 Dodge B300 van provided by FHW A.
In addition to the computer system, the hardware also includes transducers for measuring
the speed of travel, height above the road at the midpoint and in each wheeltrack, and
vertical accelerations on the vehicle body at two of the height sensors. The electronics
system has provisions for two additional outboard road sensors so that rut depth in the
separate wheeltracks can be measured should additional sensors be installed.

This section describes the hardware components used in the profilometer. The
computer components and transducers, described briefly in this section, are commercially
available products that include detailed documentation provided by the manufacturers. For
this reason, only the UMTRI-supplied hardware (analog signal-conditioning unit and
calibration IBM interface card) is described in detail. Appendix A contains all of the
schematics for the hardware built at UMTRI, and appendix B contains all of the cabling
information.

The Computer System

An IBM PC is the heart of the profilometer serving to control its calibration, operation,
data acquisition, data processing, and data viewing. An ADIC Model 550 Tape Recorder
system is used for recording the measured data. It is a 64-megabyte cartridge recorder
capable of recording at up to 35k Hz, which appears as four hard disk drives to the
computer. The PC is a standard commercial version with the following components:

• IBM-PC, 256k memory, 2 DS DD floppy disk drives, and floating point processor.

• Hercules graphics card and IBM monochrome monitor.

• AST Six Pack Plus with 384k memory, clock, serial pon, and parallel port .

• Data Translation Analog J/0, Model DT-2801-A.

• Hicomp 512k bubble memory card .

• C. Itoh dot matrix printer (IBM compatible) .

• ADIC tape control card,.

• Calibration IBM interface card (custom-built with the signal-conditioning unit) .

A Tecmar expansion chassis is required with the PC to accommodate all of the extra
cards. Figure 1 shows an overview of these components.

3

.i:-.

.....

CRT

"'-- --~

j Keyboard

• Display with Menus,
Status, Plots
I r-~. - I

Commands

•
· IBM-PC SYSTEM UNIT

Floppy Hercules
Disk Graphics

Memory,
Clock,
Printer

.. ..
co·ntr. Card

Bubble
Memory
(Floppy

Emulator) Interface I ◄ . I

Statistics

• •
Plots,
Statistics

Tape

6 T Profiles,
♦ RawData

! !
TECMAR EXPANSION

Tape
Control

CHASSIS

ND

• Analog
Signals

Calibration
Control

Cal. Control

• Analog
Floppy Disk I Printer Signal Conditioning Signals I Test Jacks I •

Accelerometers (2) · l Speed/Distance j

Road Sensors (3) •",

Figure 1. Overview of the hardware used in the profilometer. -.>.,.:

The system software is installed on the 512k bubble memory card, which is retained in
memory even when the system power is turned off. The floppy disks are not necessary for
operation of the system, but can be used to transport information into and out of the
computer. The AST Six Pack Plus supplements the computer memory to the limit of
640k, and the parallel port is used to drive the printer. The Data Translation Analog 1/0 is
the analog-to-digital converter system. It has 8 double-ended inputs and is capable of
digitization at 35k Hz. The ADIC Tape Control card is purchased from the tape
manufacturer, and is used to control the tape recording system.

The conditioning of the transducer signals is performed by an. UMTRI analog signal
conditioning unit, described in a later subsection. The calibration IBM interface card is a
custom-built card designed to interface the IBM PC with the UMTRI analog signal
conditioning unit, communicating signals needed for calibrating the data channels.

The IBM PC, the expansion chassis, and the tape recorder are mounted in the
instrumentation console behind the driver's seat, which is shock mounted with cable
isolators purchased from Aeroflex. The printer is mounted atop the console, and the
keyboard and monitor are installed on a pedestal next to the front passenger seat.
(Photographs of the system are contained in the users manual and the project report.[1.21)

Transducers

Speed/Distance Transducer

The vehicle speed and distance of travel are measured by a pulser installed in the left
front wheel. Within the back side of the disc brake rotor is installed an exciter ring in the
form of a disc with 120 notches (3 degree intervals). Rotation is sensed by a magnetic
pickup which generates two pulses with the passage of each notch. Each distance pulse
corresponds to approximately 0.37 in (10 mm) of forward travel for the installed tires.
(The exact relationship between the pulse interval and forward travel is detennined by
calibration involving a measured distance. See section 3.3.3 in the User's Manual.l21) The
pulse train goes to the analog signal-conditioning unit, where it feeds into a frequency-to
voltage converter to produce an analog speed signal. The pulse train is also fed to the
computer to communicate distance traveled. Within the computer, a counter synchronized
to the pulse train triggers data sampling at the selected intervals along the road, as described
in the next section, "Data Collection."

Accelerometers

The accelerometers are rigidly mounted in the vertical orientation on .fixtures just above·
the road sensors in each wheeltrack. These are Sunstrand Model QA-900 servo
accelerometers, rated at 30 g's full range (250 g's shock), and 500 Hz natural frequency.
They have a threshold and resolution each better than 0.005 mg, and a maximum cross-axis

5

sensitivity of 2 mg/g. They are powered by ±15 volts DC supplied from the signal
conditioning system.

Road Height Sensors

Two types of road sensors were provided for test by FHW A- infrared noncontacting
sensors developed by Southwest Research Institute, and a set of Selcom Optocators. [4,5,6]
The van is modified by installation of enclosures below the floor level where the sensors
are mounted. This is necessary primarily to place the sensors at the proper distance from
the road, nominally 10 in (250 mm), but has the additional advantage of minimizing
obstruction of the vehicle interior.

The enclosures are designed to accommodate either sensor. The infrared sensors are
self-contained, requiring only a 12 volt DC power supply (obtained directly from the
inverter connections) and signal wires going to the signal conditioner. The Selcom
Optocators require their own signal conditioning box, which is mounted at the rear of the
van.

Analog Signal-Conditioning Unit

Backplane

A picture of the signal conditioning unit backplane is shown in figure 2. The backplane
is a printed circuit card that holds the connectors for the transducer inputs, signal
conditioning cards, control inputs, control card, and pull-up card. Also on the backplane
are solder pads for the,ND and test jack wiring. Most of the connections between cards are
accomplished with printed circuit traces, although some wire wrapping is used. Figure 3
shows the layout of the backplane. Transducers are interfaced via the 9-pin connectors at
the top. Two 25-pin connectors (DB25/A and OB25/B) bring in the calibration control
lines from the computer. The control card in the far right slot (as shown in the figure)
decodes these signals and distributes them to the remaining cards. The next 16 slots are for
signal conditioning cards. In the profilometer system, slots CO through C7 are occupied by
analog signal conditioning cards, C8 by the velocity converter card, and C15 by the AID
check card. Slots C9 to C14 are not used for the profilometer. The last slot contains the
pull-up card. Power is brought in via a screw terminal on the left end of the backplane.

Test Jacks

Test jacks for monitoring the analog signals that get fed to the AID converter are
mounted on the front panel and are provided for setup and diagnostic purposes. The jacks
are mounted in pairs with a ground jack for each signal jack so that standard dual banana
plugs may be used.

6 .

I I',

Figure 2. Photograph of the signal-conditioning unit backplane.

7

ltnl~l~l§l~l
I Pull-ue Card I
I C15 AID Check Card I
I C14 I

T

'"I1
~-
@

I C13 · I
~-1

--

I C12

~ I

r I C11 I
'<
0 c:: I C10 I
0
g

I

I C9 I
r,o
~

I C8 Velocllk'. Converter Card !
I

co E.
0 I C7 I
0 ::,
fr. I C6 I s·
::,
s·

I

I cs MID RUT I
.,

(IQ

c::
e.· I C4 HGT LEFT I

I ...
CT
ti) I C3 ,;[_LEFT I
O·
:,,;-
'2.
§

I C2 va.ocrrv I
I

!) I Cl ,;z. RGHT I
I co HGTAGHT I

-..
I Control Card I
~
I D825/A I I D825/8 l

c-

Analog Signal-Conditioning Card

A picture of an analog signal conditioning card is shown in figure 4 and a block
diagram is shown in figure 5. The transducer connects to the card via a 9-pin connector
(through the backplane) and an 1/0 header. The jumpers on this header provide the
transducer's excitation (±15 volts for accelerometers and rate transducers and 0-10 volts for
strain gauges and potentiometers) and route the transducer outputs through the calibration
relay to the instrumentation amplifier. The computer measures the gain of the card·by
switching this relay. The inputs to the instrumentation amp from the transducer are
disconnected and a DIA-generated calibration signal (staircase waveform) is insened.

The output of the card is measured by the AID and the amplifier gain is calculated using
a linear regression formula. (The same hardware can also be used for a strain gauge
bridge, in which case the shunt cal relay is used to connect a resis'tor in parallel with one
arm of the bridge. Because the voltage this generates is known to be equivalent to some
force, the computer can calculate the overall system gain.)

The instrumentation amp, excitation regulator, and buffer amp in, the dashed rectangle
of the block diagram reside in an Analog Devices 2B31 module. A 16-pin gain header
provides the connection of an offset pot to the instrumentation amp, the gain setting
resistor, the shunt cal resistor, and jumpering of the output of the instrumentation amp to
the input of the buffer amp. The computer adjusts the offset voltage of the card by sending
a d,igital value to an 8-bit DIA whose output is summed with the signal at the buffer
amplifier. Finally, the signal is filtered by a 4-pole Butterwonh filter (contained on a plug
in card) whose cutoff frequency is proportional to a clock frequency that the computer
generates.

Filter Card

The filter card plugs onto the analog signal conditioning card. It contains a ±6 volt ,
regulator, a MFlO filter chip, and a filter for removing clock feedthrough on the output of
the filter. The filter is composed of two stages cascaded to give a 4-pole Butterwonh filter.
Three resistors for each stage set the gain and the Q of the filter. The cutoff frequency of
the filter is proportional to the clock frequency delivered to the filter by the backplane. For
more information on the MFIO filter chip see a National Semiconductor Data book.

Configuring a Channel

A channel is configured for a specific transducer by entering the needed information
into the setup table of the profilometer software and also by putting the appropriate jumpers
and resistors on the various headers. Figure 6 shows an example setup table for the
profilometer as it is displayed on the display screen when running the profilometer
software. (See the User's Manual[2l for details on getting staned with the profilometer
software.)

9

I Reproduced from
I best available copy,

'--~~~

Figure 4. Photograph of an analog signal-conditioning caret

10

I-'
I-'

Shunt
Cal

Relay~

±Exe I

I I I
9

Pin L..J VO I
Con Header

±15,Com

Computer
Generated
Cal signal

I

I Cal
Relay

Gain
Header

Excitation
Header

Excitation
Regulator

Analog Devices
ii-.•~-- Module

Filter Card

...................... +
I 4-Pole

:> l ►butterworth

--_.,.. ____ ,.,.,.,., ________ , __________ _

8 Bit DIA

Filter I l Output

Computer
Generated Clock

Figure 5. Block diagram for an analog signal-conditioning carci.

/

CHAN ID tJNITS 'l'YP:&: TJUUISDOCBR AIG'Lil'I:&:R Ol'l's:&:T AT AMPLIFIER l'OLL

' <aIN <anr (NON) Z:&:ltO VOLTS QAIN(ACT) SCALi:

**** ******** **'"***** **** ***'"***'"* '"***'"***** ********* ******

0 HGT RGHT INCH 0 ■1•11-1•1 2.0000 0.0000 2.0013 2.sg10
1 AZ .RGBT G'S 0 .38760 1.3000 0.0000 1.2geo ·1.4g30
2 VELOCITr JCPR 0 20. 731!10 1.6000 0.0000 1.6014 64. 7312
3 AZ L&:l'T G'S 0 .3H2g 1.3000 0.0000 1.3147 1.ogs
4 HGT L:&:J"l' 'INCH 0 1.04670 2.0000 0.0000 2.0185 2.sg29
5 MID ROT INCH 0 · 1.05000 2.0000 0.0000 .0000 · · .0000
6 L:&:J"l' ROT INCB 0 1.04000 2.0000 0.0000 .0000 .0000
7 RGH'1' ROT INCH 0 1.04000 2.0000 0.0000 .0000 .0000
8 DISTANCE INCB 0 .36U3 1.0000 0.0000 .0000 .0000

Figure 6. Example display showing setup data for the analog signal-conditioning cards.

12

The first item entered is the channel ID. This is the name of the channel and can be any
string of up to eight characters. The second entry is the type of units associated with the
transducer which is also limited to eight characters. The third entry is the transducer type
which can be 0, 1, or 2. A transducer of type O is one whose zero data value is assumed to
correspond to zero volts. In the profilometer, all transducers are type O and have their zero
data when the calibration bar is in the middle position. When a calibration of a channel of
type O is performed, the transducer remains connected to the amplifier during the nulling
process. The computer assumes that the transducer is in a zero data condition (at rest for an
accelerometer) and adjusts the amplifier so that the output is nominally zero volts (±.040
Y). The amplifier gain is then measured by the staircase procedure.

(A transducer of type 1 does not have a .convenient zero data condition. This often
occurs when a pot is used to measure a .deflection that never has exactly the same zero
position, such as the static deflection of a vehicle suspension. When a calibration of a
channel of type 1 is done, the computer disconnects the transducer from the amplifier and
shorts the amplifier inputs. Thus only the amplifier is nulled. The amplifier gain is
measured by the staircase procedure.)

(A type 2 transducer is a resistive bridge transducer for which the zero procedure is the
same as for a type O transducer. The gain is measured via a shunt cal resistor.)

The fourth item in the display is the transducer gain (units/volt) for types O and 1 or the
shunt cal value (in units) for type 2 transducers. For the transducers provided with the
profilometer, these gains are measured according to the manufacturer's instructions. The
usual calibration method involves providing various levels of input that are known with
greater accuracy than will ever. be required for the transducer, and measuring the
corresponding voltage outputs. At UMTRI, accelerometers are usually calibrated by
placing them on a tilt table so that the input is the sine of the tilt angle times gravity. Height
sensors are calibrated by attaching them to a machinist's mill and moving the bed of the mill
to provide the input displacement

The fifth item shown on the display is the nominal amplifier gain, with units of
volt/volt. This should be close (±10%) to the actual gain because the calibration algorithm
uses it to calculate the input step size for the staircase waveform.

The next item is an offset, which is defined as zero for all of the transducers used in the
profilometer.

The actual amplifier gains cannot be changed by editing the screen. It is measured
automatically during an electical calibration, as described in section 3.1 in the User's
Manual. The value shown is the result obtained from the most recent calibration.

The final item is the full-scale value, which corresponds to the maximum reading of 5
volts. It is calculated for a type O or J transducer with the relationship:

Full scale= [transducer gain/amp gain] x 5

For example, in the example setup from figure 6, the full scale for channel O is

13

Full scale= 1.0395 (inches/v) / 2.0013 (v/v) x 5 (v) = 2.59706 inches

and for channel 2 it is

Full scale= 20.7319 (nri/h/v) / 1.6014 (v/v) x 5 (v) = 64.73 mi/h

Usually, the desired full scale is used to determine an appropriate amplifier gain.

Analog Control Card

The analog control card occupies the far right slot on the backplane (see figure 3). The
address and strobe lines from the DB connectors are routed to this card. Figure 7 shows a
block diagram of this card. One decoder decodes the address lines and the cali.bration relay
enable line into the 16 different relay control signals. One of these signals goes to each
analog signal-conditioning card and either turns on or turns off the calibration relay. The
second decoder decodes the address lines and DIA enable line into 16 different D/A enable
lines. These lines enable the 8-bit data bus to be loaded into a offset DIA on the selected
analog signal-conditioning card.

Velocity-Converter Card

The velocity-converter card occupies slot CS on the backplane. Figure 8 depicts a
functional diagram of this card. The signal from the magnetic pickup on the left front
wheel comes in the 9-pin connector on the backplane and is fed into a LM2917 frequency
to-voltage convener chip. This chip uses a frequency dqubler so that the resolution. of the
pulser is effectively multiplied by two. The output from this device is an analog signal
proportional to velocity, which then goes to a 2-pole filter that removes the ripple. The
filtered velocity signal is then directed to the velocity analog signal-conditioning card
elsewhere on the backplane.

The original pulser output also goes to a pulse shaper and a differential line driver
whose output is a digital signal that is twice the frequency of the wheel pulser. This signal
proceeds to the ND sequencer where it synchronizes the data sampling to a multiple of
wheel pulses (fixed distance sampling).

AID Check Card

The A/D check card occupies slot C15 on the backplane. Figure 9 diagrams the
operation of this card. The output of this card goes to the channel 7 input on the ND card.
Normally the output of the analog signal-conditioning card in slot C7 is connected to the
AID. For test purposes, this signal is removed and either a 2.5 volt reference or the
calibration DIA signal is routed to the A/D. The 2.5 volt reference allows the gain of the
AID converter to be checked. The gain calibration of the D/A can be checked when it is
connected to the AID.

14.

16 Calibration
Relay Select

Lines

One of
Sixteen·.
Decoder

Address Lines

► D/A Enable

Cal Relay
Enable

One of
Sixteen
Decoder

· Figure 7. Block diagram of the analog con:trol card. .

15

16 D/A
Select
Lines

....
a>.

LM 2917
Wheel I _ I Frequency to

. Pulser ~Voltage Converter
with F.requency

Doubling

2-Pole
Ripple Filter

Pulse
Shaper

To Velocity Analog
Signal-Conditioning Card

Differential
Line Driver

To Calibration IBM
Interface Card

Figure 8. Block diagram of the velocity converter card

r '
Computer
Generated

DIA
'- ~

. '

•"

' '' ,
r "I .,

' Data Translation
Output of - Switching - AID Board

Channel 7 - ~

Channel 7
'- • '- J

'

;j l

'•.

r "
2.5 Volt

Reference
'- J

Figure 9. Functional diagram of the,A/D check card.

17 ·

Pull-up Card

The pull-up card occupies the left most slot on the back.plane. This card contains a
voltage reference that all of the offset D/A's use. Since all of the data bus lines and the
filter clock come fromopto isolators on the calibration IBM interface card, pull-up resistors
are required. These resistors reside on this card.

Callbratlon IBM Interface Card

The calibration IBM interface card plugs into either the IBM PC or the expan~ion
chassis. It is a prototyping card with wire-wrapped connections. The card contains the
interface to the IBM addresses and data buses, circuitry to control the signal-conditioning
unit, and the AID sequencer.

IBM Buslnte,face .·

Figure 10 shows the block diagram of the calibration IBM interface card. (The
schematic is shown in figures 29-32 in appendix A. Figure 29 shows all of the bus
interface.) Two one-of-eight decoder/demultiplexer chips (74LS138) provide the address
selecting for the card (address range #300 to #31F). An octal bus transceiver (74LS245)
buffers the data lines and a octal buffer/line driver (74LS244) supplies the bus control
signals. Finally a dual D-type flip7flop (74LS74) connects the output of the AID sample
counter to the PC interrupt controller.

Signal-Conditioning Unit Interface

The circuitry diagrammed on the right side of figure 10 constitutes the signal
conditioning unit interface. (Schematics are in appendix A.) All digital interface lines are
opto-isolated to allow flexible power-up sequencing and to prevent ground loops in the
analog interface. An 8255A Programmable Peripheral Interface chip provides both the
address lines and the control signals for the signal-conditioning unit. The control signals
(D/A enable, DIA strobe, cal select, and shunt cal select) are taken from port C of the
8255A because these lines are individually addressable. One of the counters in the
AM9513 chip generates the clock signal for the anti-aliasing filters on the analog signal
conditioning cards. Finally an eight-bit latch (74LS273) interfaces the PC data bus to the
signal-conditioning unit data bus.

AID Sequencer
.

The AID sequencer is the most complex part of the calibration IBM interface card, and
the AM9513 system timing controller is the major component. on that card. This chip
includes five general-purpose, 16-bit counters. A variety of internal frequency sources and
external pins may be selected as inputs for individual counters with software selectable

18

',. IBMPC -

'

-
Bus

Interface

I

••
, ,

Am9513
System
Timing

Controller

Out 1 Out2
1P , . '

AID
Sequencing

Circuitry

t I

Opto
Isolator

j •

Wheel Pulse Signal
From Velocity-Converter Card

Opto

8255A Isolators·

Programmable

--

Peripheral
Interface

Opto
~ Isolators

8-bit Opto · ... Isolators
Latch

- Opto
- Isolator

Calibration
Control
Relay

, ,
To AID Board
External Clock

~ -

'

Addr
Bu

ess
S.

' ~ . ---

Stro bes
--

Dat a
Bus

,' ' --

Filte
Cloe

--

D/A

--
Ca

r
k

Sign als

. ' '

'·.

Figure 10. Block diagram of the calibration IBM interface board.

19

active-high or active-low output polarity. Both hardware and software gating of each
counter is available. The counters can be programmed to count up or down in either binary
or BCD. The output from any of the counters can be connec~ via software to the input of
another.

Table 1 and figure 11 illustrate how the counters are used in the profilometer. The
table indicates the mode, direction, source; output type, and initial counter value for each of
the five counters. Figure 11 translates the above into the mode register bit assignments
which actually program the counters. Counter #1 is used to count down either a time-based
clock signal derived from the system clock or the signal from the wheel pulser via the
velocity-converter card. The output from this coun.ter synchronizes the beginning of an
AID scan with elapsed time intervals in the. bounc.e test or distance intervals along the road
in the profile test. Counter #2 provides th~ control of the individual channel sampling (set
to the maximum rate for the Data Translation A/D board) withm the A/D scan. Counter #3
counts down the output of counter #2 to provide a gating signal. For example, if there are
three data channels, only three pulses from clock #2 are gated to the AID. Counter #4
counts each of the samples and·gives an output pulse when a buffer is full. This pulse
generates an interrupt which causes the D¥A. controller chip tp be programmed with the
address of the next buffer. Counter #5 generates the filter clock and therefore is not used in
the AID sequencer. · ·

The AID sequencer schematic is shown. in figure 30 in appendix A, as part of the
calibration IBM interface card. Figure 12 shows the timing diagram for the AID sequencer.
The output of counter #2 (OUT2) is used as the clock input for flip-flops U35A and
U35B. The output offlip-flop U35A (TRlGl) is the output of coumer #1 synchronized to
the falling edge of the signal from counter #2. 'The output of flip-flop U35A is the AID gate
signal. This signal is high to enable the 25 .3 Khz. clock into the AID external clock input.
It goes high on the falling edge of the next clock pulse after TRlG 1 and goes low when
counter #3 counts down (i.e., when all channels in the scan have been sampled). The
bottom line offigure 12 shows the output of the: AID seqµencer for the case of four
channels in an ND scan. '

Exercising the· Hardware .. Using Software

The analog signal:conditioning unit can be exercised using several built-in functions.
Unlike other functions offered by the system, these'.do not have a well defined role in the
context of routine testing, checking; or maintenance. , : They were used during the
development of the system, and have been retained as too.ls·that a technician may choose to
use as he or she sees fit. They are accessed by choosing the option to EXERCISE
INPUT/OUTPUT SYSTEM from the main menu: A new menu then appears on the screen
offering the following options:

• SET CALIBMTION DIA allows the operator to set the. value (±5 volt range) of the
calibrati9n signal going into the calibration relays on th~ analog cards.

K>

Table 1. Counter usage summary.

Counter Usage Mode Direction

1 Distance-based division D Down

~ _Time-based division -D Down

2 AID clock-25.3868 kHz D Down

,3 Channel counter R
Down

Neg. edge

4 . Sample counter D
Down

Neg. edge .

5 Filter clock generator D Down

IDIV=inches/sample / inches/pulse for distance-based sampling
IDIV= 2.386364 µsec / sampling .frequency ·
IFREO= 1 /3 of nominal sampling frequency

Source -Output
Counter
Value

SRC2 Positive IDIV

F1 Positive IDIV

F1 Toggle 47

SRC3 · Negative· NCHAN

SRC4 Positive
NCHAN x
NSAMP

F1 Toggle IFREQ

Counter #1

0221

Counter #1

0B21

Counter #2

0822

Counter #3

D3A5

Counter #4

1421

Counter #5

0822

15

0

15

0

15

0

15

1

15

0

15

0

Distance-based clock counter

14 13 12 11 10 9. 8 7 6 5 4 3

o. 0 0 0 0 1 0 0 0 1 0 0

Time-based clock counter

14 13 12 11 10 9 8 7 6 5 4· 3

0 0 0 1 0 1 1 0 0 1 0 0

AID clock generator

14 13 12 11 10 9 8 7 6 5 4 3

0 0 0 1 0 1 1 0 0 1 0 0

Channel counter

14 13 12 11 10 9 8 7 6 5 4 3

1 0 1 0 0 1 1 1 0 1 0 0

Sample counter ..

14 13 12 11 10 9 8 7 6 5 4 3
.

0 0 o· 0 1 0 0 0 0 1 0 0

Filter clock generator

14 13 12 11 10 9 8 7 6 5 4 3

0 0 0 1 0 1 1 0 0 1 0 0

Figure 11. Counter mode register bit assignments.

·2.2

2 1 o.

0 0 1

2 1 0

0 0 1

2 1 0

0 1 0

2 1 0

1 0 1

2 1 0

0 0 1

2 1 0

0 0 1

OUT2

OUT1

TRIG

TRIG1

ND GATE ______ _.

OUT3 LJ
ND CLOCK ---------

Figure 12. Timing diagram for the AID sequencer.

· 23

• CALIBRATION RELAY switches the calibration relay to connect this signal to the
amplifier.

• SET OFFSET puts in an eight-bit value (±127) into the offset DIA on a card.

• READ AID samples a channel at an operator selected gain and frequency, and
prints out the average voltage over the given sampling time.

• - WAIT FOR A SPECIFIED TIME checks the calendar clock. ·

• CLEAR DATA TRANSLATION BOARD initializes the Data Translation AID
board.

• SET DATA TRANSLATION CWCK sets clock on Data Translation AID board to
a specified frequency.

• SET FILTER CWCK sets the filter clock generator on the calibration IBM interface
card to the'Jrequency that the operator inputs. · ·

• RESTORE ANALOG turns off all calibration relays and load all of the offset D/A's
with their last entered values. This command is used to restore the state of the
signal-conditioning unit when power .is tur:ned off to enable board removal_ and
insertion.

• AID REFERENCE switches on the AID reference signal on the AID check card so
that it can be checked with a voltmeter.

One use of these functions is to measure an amplifier gain. To measure_ the gain of an
amplifier, switch the cal relay, put in two known voltages, read the outputs, and calculate
the gain based on the intervals.

The bubble disk contains a program written in Basic that can be useful for diagnosing
problems with the calibration IBM interface card. Called CNTIST.BAS, it sets up the
9513 chip and the related circuitry for trouble-shooting using conventional laboratory
equipment. The listing is included in appendix D.

24

DATA COLLECTION
Three different methods of data collection are used in the profilometer software. They

vary from the simplest, used in the calibration routines, to the very complex, used in the
test routine. The following subsections describe these methods and their performance
limitations. Considerations involving the sequence used to sample the transducers are also
mentioned.

Sampling a Single Channel Using Direct Memory Access (OMA)

Under the first method, the system collects data from one analog channel and requires
only the Data Translation (DT) AID board. The d:ata acquisition parameters of channel
number and gain are set via a call to the subroutine SET AD. Next the DTclock is set to the
desired sampling frequency through the subroutine DTCLOCK. Then the DMA controller
and the DMA page register on the PC motherboard must be set to their appropriate values.
Finally the collection begins with the start AID command. As can be seen in part a of figure

' 13, the samples are taken coincident with the DT clock signal.

A very important limitation of the hardware is that a page boundary cannot be crossed
when collecting data via DMA. For this reason, at most 32767 samples can be collected
and the buffer address must be carefully chosen.

The subroutine A2DONE, called by the calibration and transducer check routines, uses
the above method to collect data from one analog channel. To ensure that a page boundary
is not crossed, it finds the physical address (integer*4 ADDR) of the buffer IBUF and then
calculates the starting index into the buffer, i.e., IBUF (INDEX), so that the upper word
of ADDR and the upper word of the address of IBUF (INDEX+ number of conversions)
are the same. The address of IBUF (INDEX) is then loaded into the DMA registers by a
call to SETDMA.

Interrupt-Driven Sampling of Multiple Channels

The second method allows collection of up to eight differential channels for as long as
there is memory available. (Eight is the maximum number of channels on the AID board.)
The start channel, stop channel, and gain are set via a call to SET AD. Part b of figure 13
depicts this operation. The DT clock is set to 20 Khz and the counters in the 9513 chip are
used to generate an interrupt at the specified frequency. This interrupt can be based on the
system clock or from the wheel pulser. When the interrupt occurs, the channels are
sampled in the order as specified above. If there will be a page crossing during a scan, the
interrupt routine uses programmed I/0 to individually collect each data channel (20 Khz is
near the maximum frequency for programmed I/0). Otherwise, it programs the DT board
and the DMA controller to collect the channels and store the data via DMA. Because the
interrupt latency period is variable, this method does not give as precise a sampling interval

25

4-------- FREQ------_.

DTClock_J

Samples

a. Sampling a single channel using DMA

DT Clock

FREQ-----_.

Interrupt n _________________,n ____ _

Samples

b. Interupt driven sampling of multiple channels

.,_ ______ FREQ-----~•

Samples JUl n--------------------------~IUl __ _
c. Sampling multiple channels using DMA

Figure 13. Timing diagrams for three methods of controlling sample rate.

26

as the DMA method described above. However, it does allow more than 32767 samples to
be taken . Also, since much of the CPU's time is consumed by acquisition of the data,
simultaneous checking of the data or writing the data to tape is not feasible. This method is
used only in the pulser test where the data are not saved to tape.

Sampling Multiple Channels Using DMA

The third method of sampling allows collection of up to eight differential channels (the
maximum number of channels on the AID board) for as long as there is tape storage
available. The start channel, stop channel, and gain are set via a call to SETAD as in
method #2. In method #3 the DT clock is not used. An external clock generated by the.
AID sequencer circuitry synchronizes the acquisition of the data to the system clock (in a
bounce test) or to the wheel pulser (in a regular test). Part c of figure 13 shows the external
clock generated for sampling three channels of data. This could also be accomplished by
using the DT clock and an external trigger. However, the maximum sampling rate .would
be lower because of the time it takes the DT microprocessor to start the AID after an
external trigger. Thus the DMA. method is the most efficient way to collect multiple
channels for long periods of time:

Figure 14 shows how buffers in memory are used for collecting data using this
method. The buffer array is divided into 15 buffers of 16384 bytes each. The buffers
always include an integer number of complete scans. For example, with three channels of
data, only 16380 bytes of the 16384 bytes are actually used. As with the single-channel
DMA method, each of these buffers must not cross a page boundary.

The AID starts by filling buffer #1. When the buffer is full, an interrupt is generated
and the DMA controller is set to point to the next buffer. At this time, the status of the next
buffer is checked. If it is already full, data collection is necessarily terminated to prevent a
loss of previously acquired data. Otherwise, the AID continues to fill the buffers , one by
one, progressing from buffer #1 to Buffer #15 and then back to buffer #1. While the
buffers are being filled via DMA, the test software monitors their status. When a buffer is
full, it is written to tape and its status is cleared. Normally, the buffers are written to tape
and cleared shortly after they are filled, such that only a few buffers are in use at any given
time. Under these conditions data collection can continue until the segment of tape is full.

Sometimes the tape software must update the directory on the tape, causing the tape
writing to fall behind the data collection. This increases the likelihood that a full buffer will
be encountered and that the test must be terminated prematurely. As might be expected, the
system has an easier time keeping up when the incoming rate is low, as occurs when only a
few channels are sampled or when they are sampled at a low rate as occurs at low test
speeds. (Tests of over 10 miles have been done sampling five channels every three
inches.)

Due to a quirk in the design of the Data Translation board, the process of collecting data
is actually more complicated than indicated in the above discussion. The Data Translation

27

~
00

Buffer #1
Empty

Tape

........ Buffer #131 Buffer #141 Buffer #15
Empty · · Empty Empty

A/Dvia OMA

Figure 14. Memory buffers used for collecting data.

board samples coincidently with the external clock, but it does not store the last byte of the
sample until the next clock pulse. This causes the last byte of a buffer to be stored at the
beginning of the next buffer. To consider the effect this has on the data collection
software, consider the the first three buffers in a three-channel test, shown in figure 15.
The array BUFT contains the addresses that are loaded into the DMA controller by the
interrupt software. The array BSTRT contains the buffer beginnings that are used by the
write-to-tape routines. As can be seen in the figure, the high byte of the last sample of
buffer #1 is actually at the beginning of buffer #2. Since the buffer array is of integer*2
type, only a word address can be passed to the write routine. Thus, buffer # l is not
written to tape until buffer #2 is full. The remaining byte (the high byte of the last sample
of the last channel) is moved into position in buffer #1, and then buffer #1 is written to
tape.

After buffer #1 is written to tape the first time, the pointer in BSTRT(l) is incremented
because in the next pass the high byte of the last sample of buffer# 15 will occupy the first
location of the buffer.

Valid Configurations

The Data Translation board allows eight differential channels to be sampled. The
channels that are sampled are determined by a starting and stopping index, such that all
channels between the start and stop are sampled. For example, it is possible to sample
channels 0, 1, and 2 by specifying the range Oto 2; it is also possible to sample channels 5,
6, 7, and Oby specifying the range 5 to 0. However, the hardware does not allow the
sampling of channels 1, 4, and 5 because they are. not contiguous. · '

.
Not all combinations of channels can be used to advantage with a road profilometer.

For example, there are no measures that can be obtained from two height signals that do not
include the vehicle response. Given the objectives of measuring longitudinal profile and rut
depth, the eight transducers for the profilometer have been assigned the permanent channels
indicated in figure 16. This layout puts the three sensors (height, acceleration, and
velocity) needed for longitudinal profile adjacent to each other in positions Oto 5, so that
either profile can be measured efficiently by sampling only three channels. Figure 20
(contained in the section "Data Files") shows the valid configurations allowed for the
system along the channels that are sampled by the digitizer for each configuration.

29

IBUF(BSTRT(1))
Buffer #1 ADDRL(1)

I
I

I
I ILjHILjHILIH L H L H L H L H L H L

chO ch1 ch2 chO ch1 ch2 ch2 chO ch1

ADDRF(2)

BUFT(2)
Buffer #2 ADDRL(2)

vi
L H L H L H L H L H L H L H L H L H

0 ch1 ch2 chO ch2 chO ch1 ch2 chO ch1

ADDRF(3)
I

BUFT(3)
. Buffer #3 ADDRL(3)

L H L H L H L H L H L H L H L H
ch1 ch2 chO ch2 chO ch1 ch2 chO ch1

I◄ 16,384 bytes ~
Figure 15. Illustration of carryover byte between buffers when collecting data

Index in Fortan software

''
1

2

3

4

5

6

7

8

ND regis ter

i
0

1

2

3

4

5

6

7

nel name Ctan

. r~h;-~;.;r, i~--::L J::: :::: :: h1

a1

V

a2

h2

h3

h4

h5

.

.
.three .

. left rut :l ruts

Figure 16. Schematic layout of transducers in the profilometer .

. 31

COMPUTATION METHODS

This section describes the mathematical transforms used to convert signals from the
height sensors, accelerometers, and speed sensor into slope profiles, elevation profiles,
roughness levels, and profiles of rut depth. Because all of the equations are applied in the
Fortran language, the equations are shown using Fortran notation. The many Fortran
functions and subroutines that make use of these analyses are described in the later section,
Profilometer Subroutines.

In addition to the theoretical considerations of computing the desired measures from the
transducer signals, there are also practical issues to face when perfonning the calculations
on a computer with memory limitations. This section describes how buffers are used to
allow the data files to be much larger than the computer memory.

Equations and Signal Processing

Slope Profile

The UMTRI/FHW A profilometer computes longitudinal profile using a variation of the
method invented by Spangler and Kelley at the General Motors Research Laboratory.l7]
Three measured signals-acceleration, height, and speed-are combined to yield the profile
of the road. For several technical reasons, the slope profiles are stored on tape rather than
the elevation profiles. The computation of slope profile includes five steps: ·

1. the bias in the accelerometer signal is calculated and subtracted to minimize error in
the following integration;

2. the acceleration signal is converted from temporal acceleration to spatial
acceleration;

3. the spatial acceleration is integrated once to obtain a slope signal;

4. the height signal is differentiated once to obtain a slope signal; and

5. the slope signals from the height and accelerometer sensors are added to obtain the
slope of the profile.

These steps are accomplished numerically for signals that have been digitized at a constant
spatial interval. The equations are shown below, using Fortran notation similar to the
computer code used in the subroutine PRFCMP described in the section Profilometer
Subroutines.

The first step is straightforward, and is accomplished using a Fortran function called
RA VE. The second step is achieved with the equation:

ACCS (I)= SCALE* ACCT (I) I SPEED (I)** 2 (1)

32

where

I = sample number (1, 2, ...)
ACCT (I) = i-th sample of accelerometer signal (temporal, with units such as m/sec2)

ACCS (I) = i-th sample of spatial acceleration (with units such as 1/m)
SPEED (I)= i-th sample of vehicle speed (with units such as m/sec)
SCALE = scale factor needed to obtain correct units in eq .. L (If the signals have

the m-sec units indicated in parentheses, then SCALE = 1. In the present
software, SCALE is calculated from scale factors relating the units used
for the transducers to m-s equivalents.)

The third step is achieved with a digital filter, defined by the recursive equation:

Sl (I)= COFINT * Sl (I - 1) + ACCS (I)* DELTAX

where

= component of slope profile obtained from the accelerometer (m/m)

(2)

Sl (I)
COFINT = constant filter coefficient slightly less than 1.000, defined below in eq. 5

(dimensionless)
DELTAX = sample interval (with units of m)

The fourth step is achieved with a digital filter that has identical phase properties as eq.
2, but serves to differentiate rather than to integrate:

S2 (I)= (COFINT* H (I+ 1) - H (I))/ DEL TAX

where

S2 (I) . = component of slope profile obtained from the height sensor (m/m)
H (I) = i-th sample froin the height sensor (with units of m)

The complete profile is the sum of the two components:

SP (I) = S 1 (I) + S2 {I)

where

SP (I) = slope profile (m/m)

(3)

(4)

The coefficient COFINT should be given a value slightly less than 1.0000. A value of
1.0000 means that the integrator and differentiator defined by eqs. 2 and 3 do not include
any additional filtering to remove d.c. drift and very long wavelengths. In the PRFCMP
subroutine, the value of COFINT is determined by the equation:

COFINT = 1 - DELTAX I LNGWAV

where

33

(5)

LNGW AV = A spatial equivalent of a time constant, which will be about 113d of the
longest wavelength of interest (m)

Rut Depth

Rut depth is computed from three height signals, as shown in figure 17. The rut depth
of a wheeltrack is the difference between the elevation in the wheeltrack compared to a line
drawn between two reference points on either side of the wheeltrack. Alternatively, a
middle rut profile is available that shows the average difference in elevation of the two
wheeltracks and a single reference point located between them. For each point, the rut
depth is computed using the relation:

R(I) = [(LL x HL(I)) + (LR x HR(I))] /(LL+ LR) - HC(I)

where

R(I)
LL
LR
HL(l)
HR(I)
HL(l)

= i-th value of the computed rut depth
= distance from left-hand height sensor to center height sensor
= distance from right-hand height sensor to center height sensor
== i-th sample from the left-hand height sensor
== i-th sample from the right-hand height sensor
== i-th sample from the center height sensor

(6)

These calculations are performed by the subroutine RUTCMP. The subroutine
calculates the rut depth for every sample and accumulates those results over ten samples.
The average is calculated and kept for later writing to to tape file.

Roughness

Roughness is computed using a quarter-car simulation using standard vehicle
parameters and a standard simulated speed of 50 rni/h. The measure is called the
International Roughness Index (IRI). The quarter-car simulation involves four variables
that define the computed motions of a reference vehicle. At each point along the profile,
each of these four variables are calculated using the equations:

Xl(I) = Xl(I-1) * S 11 + X2(I-1) * S12 + X3(l-l) * S13 + X4(I-1) * S 14 + Pl * SP(I)
X2(1) = Xl(l-1) * S21 + X2(I-1) * S22 + X3(I-1) * S23 + X4(1-l) * S24 + P2 * SP(I)
X3(1) = Xl(l-1) * S31 + X2(1-1) * S32 + X3(I-l) * S33 + X4(I-1) * S34 + P3 * SP(I)
X4(1) = Xl(l-1) * S41 + X2(1-l) * S42 + X3(I-1) * S43 + X4(I-1) * S44 + P4 * SP(I) (7)

where

Xl(I) ... X4(1) = 4 vehicle variables at the i-th position on road
S 11 ... S44 = 16 coefficients that are called a state transition matrix

34

HL HC HR

LL LR

•

Left Rut Right Rut

Figure 17. Definition of rut depth used in the profilometer.

35

Pl...P4
SP(I)

= 4 coefficients that are called a particular response matrix
= i-th value of slope profile

The 20 coefficients used in eq. 7 are a function of the sample interval, DELTAX. They
are calculated when the operator chooses the sample. interval, using the subroutine
SETSTM. The method used in SETSTM for computing these c:oeffjcients is described
elsewhere. [8)

The roughness is accumulated using the Fortran line of code:

ROUGH (I) = ROUGH (I - 1) + DELTAX * ABS (Xl(I)- X3(1)) (8)

The roughness is updated at every sample of slope profile, but only every tenth value is
stored on the tape. These calculations are performed in the Fortran subroutine PRFIRI.

Profile Elevation

The profile elevation is computed from the profile slope using the same digital filter
uses to integrate the accelerometer in eq. 3. The integration of slope is performed
backwards to cancel the phase lag introduced when computing slope via eqs. 1 - 4. When
moving backwards (from the end of the test to the beginning) the numerical integration is
defined by the equation:

EP (I)= COFINT * EP (I+ 1) + DELTAX *SP (D

where

EP (I) = i-th value of the elevation profile.

(9)

This profile signal h~s no phase distortion introduced by the data processing. This means
that the same profile should be measured regardless of the direction that the profilometer is
travelling over the wheeltrack. The elevation profile stored in the data file is computed by
the PRFCMP subroutine. The GETELV subroutine-used to get elevation data for
plotting-also computes elevation using eq. 9 when detailed plots are requested by the
user.

Filtering with a Moving Average

The elevation profiles are always filtered to remove, long wavelengths when they are
plotted. The filtering is accomplished by the subroutine HIP ASS using a moving average.
A moving average is also used by the subroutine LOPASS to smooth the roughness and rut
depth profiles.

The moving average involves averaging an input signal over a number of samples to
obtain each value of the output signal, using the equation:

36

Ys(i) = ..1..
m

i+m-k
L Yr(i)

j =i-k

YrG) =j-th value of original (raw) signal
y

8
(i) .;,; i-th value of smoothed signal

m = number of samples in the moving average baselength
k = number of samples in 1/2 of the moving average baselength
b = rn x I:!,. = baselength of moving average
I:!,. = distance between samples

(10)

In order for eq. 10 to duplicate a true moving average (as occurs in the limit when d
approaches zero), the value of m should not be too small. A value of m=9 points in the
summation is a reasonable lower limit. As m increases, such that the baselength is much
longer than the sample interval, the equation approaches a true moving average.

The computations implied by eq. 10 are. written more efficiently for the computer
software:

y8(i) = y8(i - 1) + ,...1... [Yr(i + m - k) -yr(i - k - 1))
m

(11)

Eq. 11 is recursive, meaning that the new value for y8(i} depends on the previous
value, y8(i - 1). This equation is much more efficient than eq. 10: even if the moving
average includes thousands of points, each smoothed value is calculated from just two of
the original values (at sample numbers i+rn-k and i-k-1) and the previous smoothed value.

The moving average is converted from a lopass filter to a hipass filter by subtracting the
smoothed signal from the original signal: ·

Yh(i)= Yr(i) ~ Ys(i) (12)

where Yh is the hipass filtered signal.

Profile elevation is filtered using eqs. 10 through 12 to remove long wavelengths
whenever profile plots are made, using the Fortran subroutine HIPASS. Using only these
equations, the first k and last m-k values cannot be plotted. This is because eq. 11 requires
an initialization to obtain the first value of the smoothed signal, and it also "looks ahead."
In order to show the entire filtered profile, including the first and last k points, artificial data
are added automatically by the software at the beginning and end of the measurement. The
extra points are generated using the equation:

Ya(i) = Yr(l) + y' • (i - 1)

where

37

(13)

y' = slope of profile (with respect to sample number) for the first k samples
Ya(i) = artificial profile point

i = 1-k ... 0 (i :5: 0)

Eq. 13 generates additional points that lie on a straight line which connects to the elevation ..
of the first point of the measured profile. The slope y' is computed by a linear regression
between elevation and sample number over the first k samples.

The same method is used to generate artificial points at the end~ using the equation

Ya(i) = Yr(n) + y' • (i - n)

where

y' = slope of profile (with respect to sample number) (or the last m-k samples

i = n+l ... n+m0k

(14)

These artificial points are created as needed, based on the interval of profile to be
plotted and the current baselength for the moving average. They are never stored in the
data file.

Plotting of Elevation

Two methods are available for plotting elevation profile. These are available to the user
as quick and detailed. When the quick option is selected, the data are read from the
elevation part of the data file. The profiles have units of height, and are filtered with the
hipass moving average and plotted. When the detailed plotting is requested, the slope
profile data are read into memory and integrated backwards using eq. 9 to obtain the
detailed elevation profile. The first elevation value, used to initialize eq. 9, is obtained from
the elevation part of the data file. Thus the slope profile is always read up until the next
distance for which an elevation point is stored in the file. The elevation data is used to
ensure that all elevation profiles that are computed.have the same reference, which is an
(arbitrary) elevation of Oat the end of the run.· By using the precomputed elevation data,
the slope profile can be integrated starting at any point in the file with the same result as
would be obtained by starting at the end of the file and integrating all the way back to the
data of interest. The Fortran subroutine GETEL Vis used to transfer the data from the file
to memory and to perform any necessary processing to obtain filtered elevation profiles. If
a detailed plot is requested, the subroutine loads the detailed slope profile and performs the
backwards integration. For either type of profile, the HIP ASS subroutine is called to add
any necessary artificial points and apply the hipass moving average filter.

38

Buffers and Memory Usage

Rut Depth and Roughness

The profilometer software reserves some of the memory of the machine for the storage
and processing of the signals measured with the profilometer. The available memory,
shown in figure 18, is specified by the Fortran parameter MAXBUF. This memory is
divided into two sections-one to hold the raw data, and one to hold the rut depth and
roughness data. Both the rut depth and roughness signals are decimated by a factor of ten,
and therefore les~ memory is needed for the computed signals. (The decimation factor is
stored as the Fortran variable TRIM: in the file header. The software will also work if a
different value for TRIM: is used, but figure 20 in the next section, Data Files, should be
consulted to ensure that there will be room for the data in the file if a TRIM: value smaller
than ten is used.) The speed signal is averaged and decimated by a factor of ten and the
decimated signal is also stored in the region of memory used for the rut depth and
roughness signals. The size of the region reserved for the raw data is given by the Fortran
variable NRA WFW and the size of the region reserved for the computed data is given by
the variable NRUTFW. Figure 18 shows the equations used to calculate the sizes of the
two regions as functions of the number of channels in each. ·

The averaged rut depth and speed signals depend only on the raw data currently in
memory, so the computation is straightforward. The roughness is computed by marching
through the data, calculating new values for the variables in the quarter-car simulation from
the profile and from the previous values of the quarter-car variables. The values of the
quarter~car variables are preserved between buffers.

Slope Profile

The PRFCMP subroutine uses the same memory for storing the raw data signals
(input) and the computed slope profile (output). Once the slope profile is computed, the .
raw signals no longer exist (Thus the rut depth calculations must be made before the slope
profile calculations.) Replacing the input data with the output data is a little tricky for
several reasons. First, the input data are integer*2 numbers, while the output data are
real*4.numbers. Second, the number of channels in the raw data is not the same as the•
number of profiles being computed. Third, eq. 3 requires two consecutive samples from
the height signal. It is important that none of the raw data values get overwritten .until after
they are no longer needed. To ensure this, the memory areas used for the input and output
arrays are not exactly the same.

Figure 18 shows the relative positions of the data arrays in memory, and how those
arrays relate to the tape file. After processing, the tape file is divided into segments spaced
by NBUFFW reals (4 bytes= 1 real*4 number) from the start of one segment to the start of
the next. The amount of raw data read into memory for processing is slightly greater to
include one extra sample of each channel from the next buffer. This is needed in order to

39

~
0

Sizes are in wzits of
reals (4-bytes)

Relations used to compute buffer sizes .
NRAWFW + NRUTFW ~ MAXBUF
NRAWFW = 2 + [NCHRAW + (NRSAMP •TRIM+ 1) + 1) / 2

NRUTFW = NCHRUT • NRSAMP·

Figure 18. Buffe~ used by the subroutine PRFCMP.

Raw data -Rut
~

Profile
-PJMI
Elevation
f; ,; 'i'; ,; ,; ,;1

apply eq. 3 to compute the final slope profile samples in the buffer. Figure 18. shows the
extra data as a" 1-sample overlap." The raw data values are stored in the integer*2 array
PCBUFI, and the computed profile values are stored in .the real*4 array PCBUFR. As
shown, PCBUFI begins eight bytes (two real*4 numbers) after the beginning of
PCBUFR. Thus the first two elements in PCBUFR can be set without affecting any of the
PCBUFI data. (The 8-bytes offset is defined in an include file called SETCOM, described
in the section Profilometer Subroutines.

Profile Elevation

The profile elevation is obtained using. a backwards integration and thus the
computation cannot begin until the slope profile has been completely finished. Hence, the
data processing takes place in two passes: .in the first pass the slope profile, rut depth,
roughness, and averaged speed signals are computed and written to tape, replacing the raw
data. In the second pass, the slope profile is read from tape and integrated backwards to
yield the elevation profile, which is then written to tape. As indicated in figure 18, the
same memory locations used for storing the rut depth and roughness data are used in the
second pass to store the elevation data. The slope profile is put into the same place memory
as during the first pass. The elevation data always take le.ss space than the rut and
roughness data, so there is no danger of overflow in using the NRA WFW and NRUTFW
buffer sizes calculated earlier.

Filtering with a Moving Average for Plotting
·'

The moving average is used for smoothing the rut depth and speed signals. The
plotting range available to the user excludes the first k and last m-k points from the file, as
required by eqs. 10 and 11. 'J:he data are read from the file using the subroutine RDT APO
and placed in the (large) array in common, PCBUFR. The signals are filtered using the
LOPASS subroutine, which overwrites the data, replacing the original signals with
smoothed signals. If there are NCHRUT channels, the data should begin at element
NCHRUT + 1 in the array. The filtered data will be put into the array starting at the first
element. The first samples of the original signals are needed to compute the second sample
of the filtered signal (eq. 11), but are not needed after that. Thus values of the unfiltered
signals are overwritten as soon as they are no longer needed, and the filtered signals will
begin at the start of the array where they are accessed by the plotter.

The moving average is also used by the subroutine HIP ASS to remove . long
wavelengths from the elevation signals. The user is allowed to plot all points that were
measured, from the first to the last. This requires that up to k artificial points be added to
the beginning of the profile when the plots include the start of the data, and that up to m-k
points be added to the end when that is plotted.

Figure 19 shows that the available computer memory is divided into five regions. (In
the Fortran subroutines, MOVA Vl is the number of points included in the moving

41

--NBUFFW*i

Tape
NPRFFW \ l~,J,w

NRUTFW I
◄ NBUFFW __.j

MOVAV1
Before Moving Average MOVAV1-

Data from Tape

N3 = XLEN / DEL TAX+ 1

After Moving Average

Memory

Figure 19. Memory for plotting elevation filtered with moving average.

42

average-min eqs. 10 and 11-and MOV AV2 is the number of points to the center of the
average-· kin the eqs.) N3 is the number of samples needed to show the range requested
by the user. N2 and N3 are additional samples of measured profile on either end of the
requested range that are needed for the moving average. N2 and N4 can have values
between zero and 1/2 the number of samples in the baselength of the moving average. Nl
and NS are additional samples of artificial data, generated by extrapolating the measured
profile with a linear regression. They will also have values ranging between zero and 1/2
the number of samples in the baselength of the moving average. The total of Nl and N2 is
MOVAV2 (kin the eqs.) and the total of N4 andNS is MOVAV1-MOVAV2 (m-k in the
eqs.). The data points in the regions N2, N3, and N4 are obtained from the data file by the
su.broutine GETELV. The artificial points in the regions Nl and NS are added if necessary
by the subroutine IDPASS, which also applies the moving average.

As indicated in the figure, the unfiltered data are placed in memory with space at the
beginning for one sample of each profile signal. That space is used for the first sample of
the filtered signals. The values of the following samples overwrite the unfiltered data as
shown, such that when the filtering is complete the signals to be plotted begin at the
beginning of the array and contain the correct number of points (N3).

43

DATA FILES

File Types

A file containing data measured with the profilometer goes through three stages. First,
the transducer signals are stored in their original form during measurement. Second, the
signals are checked to validate the run. Third, the validated file is processed to compute
profiles of slope, elevation, roughness, and rut depth. The original file is.modified by the
processing, such that the raw data are overwritten when the profile and rut depth signals are
computed.

In addition to the normal road test, a special bounce test can be made with the
profilometer at rest The layout and structures of the data files for bounce.and road tests are
identical. ·

The files containing road data end with the IBM extension :DTA, and the files
containing bounce data end with the extension .BNC. When the user opens a file using the
profilometer software, the names of all files having the appropriate extension are shown on
the display screen. The status of each file (raw, checked, or processed) is detennined after
the file is opened.

File Structures

The Header

The first 2048 bytes in the file define a header that contains information describing the
test conditions and the layout of the remaining portion of the file. This information is
accessed by the profilometer software through an integer array SET contained in the
common block SETCOM, described later in the section Profilometer Subroutines. A
variable named TSITYP is included in the header and defines the status of the file.

When the file is first created, the header contains the number of data channels, the
sample interval, scale factors, names of channels, the date, and many other pieces of
information related to the configuration of the profilometer and the type of measurement
that is about to be made. Many other variables are set and modified after testing and during
processing.

After the header comes the data part of the file, containing the sampled signals
measured by the profilometer. During the measurement, the signals from the transducers
are digitized and written to tape in the sequence they are taken. When these raw signals are
processed, the raw data are overwritten with new signals as described in the section
Computation Methods. The header is modified to include additional information related to

44

the new layout of the file after it has been converted. The size of the data portion remains
fixed, but the structure changes when the raw data are converted to processed data.

The Fortran subroutine UPDSET updates the information in the header of an open file
by replacing the SET array as recorded in the file with the current version of the SET array
in memory.

Raw Data files

During measurement in both road tests and bounce tests, signals from the transducers
are digitized and written to tape in the order that they were taken. Each sample takes.2
bytes and is accessed in Fortran as an integer*2 variable. The first NCHAN 1 x 2 bytes
contain the first sampled values for the NCHAN transducers, the next NCHAN x 2 bytes
contain the second sampled values for transducers, and so forth. When the test is
completed, the data portion contains at least NCHAN x NSAMP x 2 bytes. For relatively
long tests, the data part of the file might include extra room at the end to allow for
processing requirements. Only the first NCHAN x NSAMP x 2 bytes contain valid data,
however.

The sequence in which the transducers are sampled depends on the configuration
selected by the operator prior to testing, as described in the subsection Valid Configurations
in the section Data Collection. Ten configurations have been defined in the profilometer
software, and the configuration number is stored as the variable TCONFI in the header of
the file. Figure 20 shows the order in which the transducer signals are sampled and stored
on tape for each of the ten configurations. For example, in configuration number 4, the
channels are stored in the sequence: hl, al, v, a2, h2, h3. (The transducer locations were
shown in figure 16 in the section Data Collection. Methods.)

The digitized transducer signals are integer*2 variables with values between O and
4095, inclusive. They are converted to engineering units with the equation:

Xij = (Gj X Dij) - 2:;
where

. Xij = i-th sample of channel j in engineering units
Gj = gain for channelj
Dij = i-th digitized sample for channel j.(integer between O and 4095, inclusive)
2:; = zero value for channel j

The gains and offsets are contained in the file header.

(15)

The data processing applied to convert the raw data into profile and rut depth signals
requires that the output signals have an even multiple of ten samples. The processing also
requires that a reduction of at least one sample occur. Therefore,.up to ten of the raw data.

1 NCHAN is the number of raw data channels; NSAMP is the number of samples.

45

ti:.
Cl')

ronfiguration

raw dola file

slope profile
bl

Number

Profiles

channels

slope

lpfotting Data I Elevation
benchmarks

extra space on tape

2 3 4 L ·s t 6 7 8 9 10

L. Profile I R. Profile 12 Profiles I ~::t~;i;i; ll ... ·•··•·:[\,~n 2~.nt.ro. !.'.·,·1·e···l 3 Ruts· · R3 P~~~e •. 12 :.r~~:s,
· .· ..) . · . . · left rut •

••_'.---. ···--__:____:_____::~~~- -

lfflg. ~ 3 a2
4 h2

112/1201 I I 121 ;~001 I [25;.!40) Jc2;11:~()~1l12~~~~ollr21l;oo1l129~ts()1 l129i{6eo1 l133i~201.
[84~80) I [84,!80) I [168~960) I (168~960] l[a4)~01J[1~8~96()] t r~l [c~.lso1. I fs4.!soJ lr1saf96()]

I I 4 I 4 I 4 I <4> I O I 4 I i4 1 · I : : :·: : ~ ~ •.i~i""":
4 . I

0 I 0 I (

4

8 8 12
(16,896) [16,896) [25,344]

1
I

12
I (33~;92] lr2s;i441lrli!i4oi lr2s;i44] l142!g4oi l[i2f~io]ltso~ts01

4 4 8
[8,448] [8;448) [16,896)

0 t • :4•:••··•1··•· ::s:. ·•,:·.::< o·· :••1 /i .. 4<·•··1····.>:•4:··::1 ···. :s ·
[16,896] J;448L [16,896] ··•• •···•···•· [Ol) l8,448l/ [8.~Jtsl jl6.8~6L

13% 13% 0% 13% •··>: ...i A(>f: •., .. :\,,v;o, • .. •1 ···•· 88% .. · •••·,:,., • • ln01 : , ::,::4· ·g· oF .•.. ,·.·· •• ·3._, • .· ~-,o-__ ·_:: ;·,·-::•:--_i::V7CL.-:-·-:--- _:::·.-:/ ___ .. -·_::;.::: ,---.=·-·· ~-70 ·:·:;: · -·-: lO _:··•:·:·_; .::. V7D: ··

·· .. :=~=·=.-... , ·.:.::::::.:.· ·::.:.\:./==··· =:.:: ··:.: ·t·:.=(··=.:::·::: ,· .. ;::<\/::· :=.-.·::.:./:;· ·:·.-:·.::-/\·.: ... ·:::. '' .· .·i.:::::

Numbers in brackets are bytes!rrule. Others are bytes/sample. Numbers for Ruland Plot data assume 10:1 decimalion

Figure 20. Tape-space requrrements for ten transducer configurations.

points at the end of the file may be ignored during processing. Figure 21 shows the
relationships between sample number and the distance traveled for the various forms of
data. The figure shows a consistent convention for relating sample number to distance, in
which the first sample in the raw data file is defined as occurring 1/2 of the sample interval
before the start of the test site.

Processed Data files

When the raw transducer signals are converted to profiles of slope, elevation,
roughness, .and rut depth, the original data portion of the file is overwritten. The main
reason for doing this is to minimize the need for fast-forwarding and rewinding the tape
during processing. A second reason is to avoid using excessive tape space copying files.
After the processing is complete, the file will contain three distinctly different types of data.
One type is the longitudinal slope profile of one or two wheeltracks, sampled at the same
rate as the raw data. The second type includes several profiles that are also calculated

. during processing which do not need to be sampled at such a close interval. These are: rut
depth, accumulated roughness, and measurement speed. These are calculated over an
interval of DXTRIM = 10 x DELT AX, where DELT AX is the sample interval used for the
raw data. The third type includes elevation profiles that are stored at intervals ofDXTRIM,
which are used to provide quick plots of profile and to ensure that detailed plots overlay
properly.

The raw data from the digitizer require two bytes for each number stored; after
processing, th!;: data require four bytes for each number. Figure 20 shows the space
required to store each kind of data, based on a nominal sample interval of 3 inches. Note
that in configuration no. 3 (two profiles, no rut depth) the processecfdata take up exactly
the same amount of tape space as the raw data. This is why a decimation ratio of 10: 1 was ··
chosen for the rut and elevation data.

The tape files may hold more data than will fit into the memory· of the computer. When
this occurs, the file is processed using buffers and the three types of data are interleaved as
shown in figure 18 from the section Computation Methods. · The first buffer starts
immediately after the header of the file. Each buffer has a length of NBUFFW reals.
(Since all of the processed data are real*4 numbers, it is convenient to use the size of a
real*4 number---4 bytes-as a unit of length. Using this convention, the total length in
bytes is NBUFFW x 4). In each buffer, the first NPRFFW reals contain the slope
profile(s). The next NRUTFW reals contain the rut (and roughness and speed) profile(s),
and the following NELVFW reals contain the plotting elevation profile(s). The remaining
part of each buffer is not used. (These sizes are added to the header of the file, along with
the number of channels in each of the three data sections. The channel numbers of the
various profiles are also'l)ut into the header section of the file.) The final buffer in the file
will usually contain less data than the others, but the buffer size is the same. When more
than one buffer is needed, the file is made large enough to hold one complete extra buffer

47.

I

I
I= 1; X=-DELTAX/2

+I (Only the shaded part of the raw data are used)

... ' '
,. f~~l%~~9:=t:i:I I I I I

RawData . I
I =NPSAMP'=

I= 1; X=DELTAX NRSAMP • TRIM

X=O 0

Profiles=0 I I I I I I I I I II

X=0
IRl=0

X=O
Elev= Y(1)

Slope Pro.file

1=1; X .. DXTAIM

', .

Accum. from Roughness, Rut, Speed
Oto DXTRIM

.

l=NRSAMP

1 •

Profile Elevation
..

KEY
Sample interval

--bt
Sample taken

, here

--....

l=NRSAMP

X=NRSAMP• D
Elevation = 0

Figure 21. Relation between longitudinal distance and sample number.

48

XTRIM

when the measuring ends. (This is why there is sometimes a delay from the time that a test
is ended to the time that the system finishes writing to tape.)

The writing of the data into this interleaved form is performed only once, by the
PRFCMP subroutine that controls all of the data preprocessing .. All reading of the data
after this is performed by the subroutine RDTAPD.

The slope profiles have ·units of slope, as defined by the units used for the height
sensors and the sample interval. These units cannot be changed by the operator, but could
be changed in the future by making a minor alteration i.n the software. (The scaling is
defined by names of the units and several scale factors stored in the header of the file.) The
units now used are in/ft. The sample interval is stored in the header as the Fortran variable
DEL.TAX.

The computation method used for the slope profiles is designed to provide the greatest
amount of information possible. Whenever an accelerometer is integrated for a long time, it
is necessary to remove the lowest frequencies (longest wavelengths) bec'ause the noise in
the accelerometer is more significant than the acce.leration from the road. The PRFCMP
subroutine used for this software sets the cut-off wavelength as a function of the test speed,
so that at higher speeds the additional information available for long wavelengths is
retained.

The first slope value is ,at the start of the test, at position x=O. (It is the slope from
-DELTAX/2 to +DELTAXi2;) The final value is number NP~AMP, and the length of the
test is DEL.TAX x NPSAMP. (See figure 21.) .

The "rut" part of the file contains three kinds of signals: rut depth, test speed, and
roughness. All three signals are calculated for every sample, but they are then averaged
over ten samples and only the averages are stored. The sample interval for these signals is
stored in the header as the Fortran variable DXTRIM. The rut depth signals have the same
units as the height sensors. Presently, the units are inches. The speed signal has units of
mi/h. The first sample for these signals is the average from x=O to x=DXTRIM. The final
sample is the average over the interval x=(NRSAMP - 1) x DXTRIM to x=NRSAMP x
DXTRIM. (See figure 21.)

The roughness signals stored in the rut part of the data files are actually accumulated
roughness, with the same units used for the height sensors (presently inches). Roughness
is always a positive quantity, and therefore the accumulated roughness always increases
from the beginning of the file to the end. The roughness between two points is obtained by
taking the difference in the accumulated roughness at each point and dividing by the
distance between points. (This would give units of in/ft, so an additional scale factor of
5280 fUmi, contained in the header, is used to show roughness with units of in/mi.) The
accumulated roughness by definition begins with zero roughness at x=O. The first value in
the roughness part of the file is the accumulation from x=O to x=DXTRTh1, and the last
value is the accumulation obtained by the end of the run, where x=NRSAMP x DXTRIM.
(See figure 21.)

49

The third part of the file contains profile elevations that are needed for the plotting
software. They have the same units as the height sensors, presently inches. The elevation
profiles are calculated for every sample taken, but only one out of every ten values is stored
in the file. The interval between samples is stored in the header as the Fortran variable
DXTRilvI. These profiles are computed with the minimum filtering that can be used for the
test speed. The ~ppearance of an elevation profile is strongly dependent on the cutoff -
wavelength used during the profile computation. Thus stored elevation profiles obtained at
different speeds will look different, because the filtering retains the additional long
wavelength information obtained with the higher speeds. The profilometer software
applies additional filtering when showing plots, such that profiles obtained at different
speeds will appear identical if the same filter baselength is selected by the user. (The only
effect of the measuring speed that is shown to the user is the fact that longer baselengths are
permitted when tests are made at highspeeds.)

Because the elevation is obtained using a backwards integration, the mapping between
sample number and distance is different than with the rut depth, roughness, and speed
signals. They all omit a value for x=O, and begin with an average taken from x=O to
x=DXTRIM. In contrast, the elevation file includes a value for x=O, but omits the value
for x=NRSAMP x DXTRIM as indicated in figure 21. (The arrows in the figure show the
direction used in processing the data.) By definition, the elevation has a value of Oat the
end of the file, at x=NRSAMP x DXTRIM, and therefore that point is not needed in the
file. The subroutine GETEL V provides the extra elevation value of zero when an elevation .
at the end of the run is needed by the plotting sof~are.

50

PROFILOMETER SUBROUTINES
This section describes the library of subroutines that makes up the profilometer

software. The subroutines may be used by programmers wishing to further develop the
system, or to adapt some of the profilometer software to other applications. It also lists
and describes the individual files that are executable or are referenced when using the
profilometer software.

The software makes use of two additional libraries. One of these is a commercial
product called Halo, which contains subroutines for controlling graphic elements on the
screen during plotting. These subroutines are described in the Halo documentation. The
other library, developed by M. Hagan (before this project), extends the Fortran language to
provide the control of the screen needed to allow user friendly interaction with the
softw~. The subroutines in this library are described in appendix C. ·

Most of the software is written in the Fortran language in the form of' numerous
subroutines. Table 2 lists these subroutines in alphabetical order and provides a quick
reference. These routines are aescribed in the remainder of this section, grouped by type in
the various subsections. The source listings for those subroutines are included in appendix
D. Many of these subroutines use Fortran common blocks to share information. The
common blocks are defined in include files, described below after the conventions used in
this section are defined.

Conventions

File Names

The profilometer software consists of a single executable file called PROFILE.EXE and
several supporting text files. These are normally stored on the bubble memory of the
profilometer system, and are listed in the next subsection. The PROFILE.EXE file is
created by compiling the Fortran code and linking the resulting object files together with the
appropriate libraries.

The files that are provided have MS-OOS extensions, following the conventions:

(no extension) text files used by PROFILE or include files required to
compile some of the Fortran subroutines .

. BAS - file containing code in the Basic language. (CNTTST.BAS is the only
Basic file.)

.EXE - executable file. (PROfilE.EXE is the only executable file.)

.FOR - Fortran source files. If the source file exists, it will have the same name as
the corresponding .OBJ file. (For example, the file RDTAPD.FOR

51

Table 2 .. List of all Fortran subroutines used with the profilometor.

ACAL (!CHAN, ROW)- Calibrate an analog data channel. ..
ADCHECK - Check the calibration. of th AID and D/ A converters.
ADSET (ADCURB,·BUFT, NBUF, BYTB, MAXB, BUFFCNT, DONE)-Set up the

data collection parameters and the interrupt routine.
A200NE (ICH, !GAIN, FREQ, NSAMPS, AV, VNSE) -. Collect AID on channel ICH.
A VEVEL (IBUF, NCI, NS, RBUF, NC2, TRIM, GAIN, BIAS) - Average and

decimate a (speed) signal.
BATCH (DR) - Process a list of data files.
CALDA (V) .- Set calibration DI A.
CALIB -.· Calibrate the analog hardware and check the height sensors.
CALREL (ICH, ION) - Switch calibration relay.
CHKSAT (HANDLE,> AUTO) - Check the raw transducer signals for saturation.
CONFIGURE - Select which data to collect
DEBIAS (ARRAY, NCH, NS, BIAS) - Subtract bias from signal in real*4 array.
DTCLEAR ·-Clear the Data Translation board ...
DTCLOCK (F) - Set the AID clock on the Data Tra11slation board.
FILCLK (F) - Set the filter clock
GETEL V (SKPLOT, NSMP, MOVA Vl, MOY A V2, QNDPL T, HANDLE, !ERR) - Get

elevation profiles from tape. .
GETLEN (X, XLL, XUL, UNITS, TITLE, PROMPT, IRET) - Prompt the user for

some type of length measure or range.
GOAHED (HANDLE).·- Warn the user that some processing needs to be done.
GRCURS (!START, IPLT, KCURS; NPTS,.IMAX, NPTOT, NPMAX,TIJPDT, XMIN,

XMAX, XSTART, DX,.YMIN, YMAX, ICH)-Wait for
. the user to hit a key, then update plot parameters.

HIPASS (ARRAY, NCH, Nl, N2, N3, N4, N5, MOVAVl, MOVA V2) - Filter a signal
with a hipass filter.

Function IA VE (ARRAY, NCH, NS) -Average value of signal in integer*2 array.
INIDO - Initialize 1/0.
INITP - Initialize status variables and check ,the . AID board and the floating· point

processor. .
IOEX - Present a menu of options to exercise the input/output hardware.
LABEL (X, STRING, L) -·· Convert a real number into a string for Halo.
LOADTP - Load and initialize tape.
LOGO - Draw the logo for the profilometer.
LOPASS (ARRAY, NCH, NS, MOVAVl, MOVAV2)-Smooth a signal.
LRSLOP (ARRAY,. NDIM, NSAMP, SLOPE)- Calculate slope of signal using a linear

, regression.
MAIN - Show the Logo and offer the. main menu to the user. ·
MEASURE - Generate the menu for measuring data.

52

Table 2. List of all Fortran subroutines used with the profilometer (continued).

:rvnNV (ARRAY, N, D, LARRA Y, MARRA Y) - Matrix inversion.
PLOT (MODE, IACTIV, NCHAN, NPTS, ICH, IIS, ITOT, DX, XMIN, XMAX,

XSTART, KCURS, YMIN, YMAX, NAME, UNITS,
XNAME, XUNITS, GAIN, OFF, IUPDT, !START,
NPTOT, NPMAX, TITLE) - Plot data using Halo
subroutines. ·

PL TELV (HANDLE, QNDPL T) - Set up plots of profile elevation.
PL TRAW (HANDLE) - Set up plots of raw signals.
PLTRUT (HANDLE)- Set up plots of rut-depth and roughness signals.
PLTSEL (NCHAN, NAME, UNITS, XNAME, XUNITS, DX, XMIN, XSTART,

XRANGE, YRANGE, YMXRNG, NPTS, NPMAX,
NPTOT, KCURS, ICH) - Prompt user for the selection of
channels and plotting ranges.

PRFCMP (HANDLE) - Convert raw data into slope profile, rut depth, IRI roughness,
and elevation profile.

PRFELV (RUFI, NCI, NS, BUF2, NC2, TRIM, DX, C, ENDELV) - Compute
compressed elevation profile from slope.

PRFIRI (BUFI, BUF2, Xl, X2, X3, X4, ROUGH) - Filter a slope profile signal using
the IRI quarter-car simulation.

PROCESS-Generate the menu for viewing data and call the appropriate subroutines.
PRTLF (LSCR, LLPT, LFL)-Add carriage returns after each line.

. PRTNUM (HANDLE) - Print numerics averaged over a specified interval.
PULSE - Check the calibration of the distance sensor.
PULTST (PASS, DONE, JJ, CONV, MAXP)- Set up the interrupt and data collection

routine for the distance pulser check.
PUTYN (YESNO, IR.OW, ICOL) - Put Y or Nin specified screen location.
Function RA VE (ARRAY, NCH, NS) - Average value of signal in real *4 array.
RDSET - Read in SETUP array from a text file.
RDTAPD (HANDLE, ARRAY, WHICH, OFFSET, NSMP, IERR) - Read numerical·

data from processed file.
RDTAPE (HANDLE, ARRAY, OFFSET, NBYTES, IER)-Read binary data.
RESTOR - Restore analog signal conditioning unit.
RUTCMP (HL, HC, HR, NCHRAW, NS, RUT, NCHRUT, TRIM, GAINL, GAINC,

GAINR, ZL, ZC, ZR, ffi.LAT, HRLAT) - Compute,
average, and decimate a rut-depth signal.

SATMAX (ARRAY, NCH, NS, OFFSET, MAX, COUNT, NSAT, LSAT)-· Check raw
data signal for saturation at upper limit.

SATMIN (ARRAY, NCH, NS, OFFSET, MIN, COUNT, NSAT, LSAT) --Check raw
data signal for saturation at lower limit.

SCLDWN (X, XNORM, XDOWN) - Scale a variable down.
SCLUP (X, XNORM, XUP) - Scale a variable up.

53

Table 2. List of all Fortran subroutines used with the profilometer (continued).

SET AD (AD) - Set up the AID parameters on the Data Translation board.
SETDMA (DM) - Set up the DMA controller.
SETSTM- Calculate coefficients for quarter-car simulation.
SETIJPS - Edit the transducer information.
STARTAD (FF,BUFST,BUFT,BUFFCNT,MAXB,ADCURB,DONE,INDEX) - Start

the data collection.
TCHECK (IC,ROW,IPOS) - Check a height transducer.
TEST (IITY)-Collect data
TIKSET (XMIN, XMAX, TICK, TMIN, TMAX, NTICK)-. Determine first and last tick

marks in a given range.
TSTDIS - Display s~mrnary of test parameters.
TWAIT (T}-Wait for a time interval.
UNLDTP-Unload the tape. .
UPDSET (HANDLE) - Update the SETIJP array that begins the current. data file.
WRTAPE (HANDLE, ARRAY, OFFSET, NBYTES, IER.)-Write binary data.
WRTSCR (FNAME) - Read names and coordinates from file, create screen display.
WRTSET- Write the SETIJP array to a text file.
YESNOL (YESNO,IROW,ICOL,IRET)-Get Yes/No answer and set logical variable.
ZOFF (ICH,OFFSET) - Set the offset on an analog card.

54

contains the source code for the subroutine RDTAPD and the file
RDTAPD.OBJ contains the compiled subroutine.)

.LIB - libraries of subroutines that can be linked to other software .

. OBJ - object files. These files contain one or more subroutines that have been
compiled and which can be linked to other software using the MS-DOS
linker.

Subroutine Descriptions

· The subroutines are documented in the following subsections. Each subsection covers
a category, and the subroutines within that category are listed in alphabetical order. The
first line in each description gives the name of the subroutine, the argunient(s) for the
subroutine in parentheses, and the name of the object file, If a Fortran source listing exists,
it will be in a file with the same name as the object file, but with the .FOR extension rather
than the .OBJ extension of the object file. Next, .the procedure performed by the
subroutine is described. The arguments are then listed in the order in which they appear
when calling the subroutine. Symbols are used to designate whether an argument is an
input or an output:

➔ the argument is an input and is never modified by the subroutine. Constants can be
used for these arguments. If variables are used, they must have values before the
subroutine is invoked.

~ the argument is an output and is set by the subroutine. Constants must not be used
for these arguments. Variables need not be initialized before calling the subroutine.

H the argument is both an input and an output The subroutine uses the initial value of
the variable, but may update it. Constants must not be used for these arguments.
Variables must be initialized before calling the subroutine.

Finally, any include files needed to compile the subroutine (using the source listing)
will be cited. The actual include statements used in the Microsoft Fortran compiler are
shown. A short discussion of why the file must be included is usually provided.

Common Blocks and Auxiliary Files

Files Used by the Profilometer Software

Several files are accessed by the program PROFILE, and are listed in table 3. The
contents of the text files are included in appendix D along with the source listings. All but
the file NAME.VOL should be present in the bubble memory (drive C) in order for the
software to function properly. The following descriptions of the individual subroutines
specify whether an auxiliary file is used by that subroutine.

55

Table 3. List of auxiliary files needed by the profilometer software.

FleName

CONFIG.SET

LOGO
NAME.VOL ..
PRTSCR

SETUP.SET
TSTSCR

Description

text. file containing parameters. that define· the ten possible transducer
configurations.
text file containing screen coordinates and labels used for the logo.
file on the tape with variables describing the tape status.
text file containing screen coordinates and labels used for setting up to
print numerics.
binary file with current setup data, equivalenced to the SETUP array.
text file with screen coordinates and labels used for creating the screen
display for a test setup.

56

Include Files

To aid in the development and maintenance of the software, the lines of code that define
these blocks are kept in special include files. When a program is compiled, an include file
is inserted into the program in place of an include command that gives the name of the file.
When many subroutines employ the same code, that code can be put into an include file to
shorten the files for the individual programs. If the code in the include file is modified, the
various files that make reference to the include file need not be changed. (However, they
must be recompiled.) Many of the profilometer subroutines share data using Fortran ...
common blocks. The definitions of these blocks and the variables they contain are kept in ·
include files.

Table 4 sho.ws which subroutines make use of five include files used in the
development of the software, described below:

• BUFCOM - defines the common block BUFFER, which contains 262,144 bytes
of memory that are used to store samples of variables that are measured and
processed at various times. The memory can be addressed using three arrays that
overlay the same space through use of the Fortran EQUIVALENCE statement.
These arrays are:

IBUF - an integer*2 array of length 131,072.

PCBUFR - a real*4 array of length 65,536.

PCBUFI - an integer*2 array of length 131,068 which has an offset of 8 bytes
in the EQUIVALENCE, needed for the profile computation
subroutine.

The sire of the array PCBUFR is also available as the Fortran parameter MXBFSZ.

• HANDLES - defines several variables that are listed in table 5.

• JOPARMS - defines Fortran parameters that are required when accessing the 1/0
hardware. These parameters are listed in table 6.

• SETCOM - defines an integer*2 array SET in the common block SETCOM.
Every data file measured for a road test or bounce test begins with 2048 bytes that
correspond to this, which overlays a number of smaller arrays and scalar variables
by using Fortran equivalence statements. Table 7 lists all of the variables that are
contained in this common block, and table 8 shows how these variables are mapped
onto the SET array through the use of equivalence statements.

This is where any data related to a test is kept, other than the sampled values of the
test variables. Some of these variables are set before the test (time, number of
channels, etc.). The number of samples is defined at the completion of a test. Other
variables are set during the various stages of data processing. Finally, some
variables are used to record how the data are plotted, so that the next time the plotter
is invoked the default values will be those most recently selected by the user.

57

Table 4. Map showing the usage of include files.

BUFCOM HANDLES IOPARMS SETCOM STATCOM

ACAL X

ADCHECK X

ADSET

A2D0NE X X

AVEVEL
.

BATCH X X

CALDA X

CALIB X X

CALREL X

CHKSAT X X X

CONFIGURE X

DEBIAS I

DTCLEAR X

DTCLOCK X

FILCLK X

GETELV I X X

GETLEN

GOAHED X

GRCURS

HIPASS
.

IAVE

INITIO . X

INITP . · . X X X -
.

58 ·

Table 4. Map showing the usage of include files (continued).

BUFCOM HANDLES IOPARMS SETCOM STATCOM

IOEX X

LABEL

LOADTP X X

LOGO

LOPASS
.

LRSLOP

MAIN X X X

MEASURE X

MINV

PLOT X

PLTELV X X X X

PLTRAW X X x, X

PLTRUT X X X

PLTSEL

PRFCMP X X

PRFELV

PRFIRI X

PROCESS X X X

PRTLF

PRTNUM X X X

PULSE X X X

PULTST

·pulYN

59

Table 4. Map showing the usage of include files (continued).

BUFCOM HANDLES IOPARMS SETCOM STATCOM
RAVE

RDSET X

RDTAPD X
.

RDTAPE X .

RESTOR X X

RUTCMP
.

SCLDWN

SCLUP

SETAD X

SETDMA

SETSTM X

SETUPS X

STARTAD X X X

TCHECK X

TEST X X X X X

TIKSET

TSTDIS X X

'TWAIT
UNLDTP X X

UPDSET X

WRTAPE X

WRTSET X

YESNOL

ZOFF X

60

Name

ACCESS

BYTES
HANDLE
METIIOD

OFFSET
POINTER
RBYTES

Table 5. Variables from the HANDLES include file.

Type Definition

integer*2 access method for file opening (0=read only, l=write, 2=read
and write.

integer"'4 number of bytes to read or write.
integer*2 file handle assigned by DOS.
integer*2 Method of file positioning (0=absolute, l=relative, 2=from the

end).
integer*4 offset into a file.
integer"'4 returned file pointer.
integer"'4 actual number of bytes read or written.

61

Table 6. Definitions of the I/O parameters from the IOP ARMS include file.

Parameter

AADDR
ADATA
CCLEAR
CCLOCK
CDA
CNTRL
CROFF
CRON
CSAD
CSTOP
CWAIT
DADIS
DAEN
DASOFF
DASON
DTCOM
DTDATA
DTSTAT
INTD
INTE,
IPC
RWAIT
SHOFF
SHON
TIMERC
TIMERD
WWAIT
ZAEN
ZDIS

Value

#305
#300
1
3
8
#307
#OC
#OD
#OD
15,
4
#04
#05
#OB
#OA
#2ED
#2EC
#2ED
#310
#30C
#306
5
#08
#09
#309
#308
2
#OF
#OE

Definition

address of analog address lines
address of analog data lines
clear command
set ND clock command
DIA command
address of PIO control register
value to tum on cal relay
value to tum off cal relay
command to setup ND parameters
ND stop command
mask for command completion test
value to disable DIA relay
value to enable calibration DIA relay
value to tum off DIA strobe
value to tum on DIA strobe
data Translation board command address
data Translation board data address
data Translation board status address
intenupt disable address
interrupt enable address
port C address of PIO
mask for read completion test
value to tum off shunt cal relay
value to tum on shunt cal relay
9513 timer control address
9 513 timer data address
mask for write completion test
value to enable card DI A's
value to disable card DI A's

denotes hexadecimal number

62

Table 7. Variables stored in the SETCOM common block and include file.

Following are the variables that are equivalenced into the array SET which occupies the
first 2048 bytes of each test file.

Variable

ADSTOP
ADS'IRT
AMPGA
AMPGN
AVEBAS
CHID

CMT
COFINT
CRUT
DELTAX
DIRECT
DXTRIM
FLTBAS
GAIN
H?LAT
ICH?

ICR
IDAY
IDMODE
ION
IH
IM
ILIRI
ILPRF
ILR
IMIN
IOFFS
IRIRI
IRPRF
IRR
!SEC

Type

integer*2
integer*2
rea1*4
rea1*4
rea1*4
character*8

Definition

ending AID channel in a test scan.
starting AID channel in a test scan. ·
array for actual amplifier gains.
array for nominal amplifier gains.
basel~ngth last used for smoothing plots.
array for channel names. 1-8=transducers,9=interval between
pulses, l0=distance, ll=IRI.

character*64 comment
rea1*4 coefficient for integration.
log*4 .true. if there is a center rut signal.
real*4 sample interval for raw data.
character"' 8 direction traveled.
rea1*4 sample interval for decimated data (m).
rea1*4 baselength last used to remove long waves.
rea1*4 array for channel gains.
rea1*4 distances between height sensors (?= 1,2,4,5).
integer*2 channel ID (offset) for sensors

integer*2
integer*2
integer*2
integer*2:
integer*2
integer*2
integer*2
integer*2
integer*2
integer*2
integer*2
integer*2
integer*2
integer*2
integer*2

(?=Al,A2,Hl,H2,H3,H4,H5,V).
channel ID (offset) for center rut signal.
day for time-of-test.
dode for test counter register.
value for counter.
hour for time-of-test.
month for time-of-test
channel ID (offset) for left-hand IRI roughness.
channel ID (offset) for left-hand profile.
channel ID (offset) for left-hand rut signal.
minute for time-of-test.
array of offsets stored in the channel offset DI A.
channel ID (offset) for right-hand IRI roughness.
channel ID (offset) for right-hand profile.
channel ID (offset) for right-hand rut signal.
second for time-of-test.

63

Table 7. Variables stored in the SETCOM common block and include file-continued.

Variable

ITSOK
NEL
IYR
LANE
LGLTCH
LNGWAV

LPROF
LRUT
LSAT
MAXBUF

MAXI.EN
NBUFFW

NBUFS
NCHAN
NCHPRF
NCHR.AW
NCHRUT
NELVFW
NGLTCH
NPRFFW
NPSAMP
NRSAMP
NRUTFW
NSAMP
NSAT
NSPTOT
NSRTOT
OFFS
OPER
PASSA
PINC
PRM
PSTART
PSTOP
RAWIX
ROUTE

Type Definition

logic used after chksat and before PRFCMP.
integer*2 channel ID (offset) for decimated velocity signal.
integer*2 year for time-of-test.
character"'12 name of test lane.
integer"'4 array with locations the raw signals first glitched.
rea1*4 longest wavelength of interest when integrating during profile

log*4
log*4
integer*4
integer*4

rea1*4

computation .
. true. if there is a left profile signal,
.true. if there is a left rut signal.

.. , array with locations the raw signals first saturated.
maximum number of (4-byte) words available for signal
processing (profile computation, etc.).
maximum test length.

integer*4 number of full-words between starts of buffers on tape after
processing.

integer*2 number of buffers in tape file after processing.
integer*2 number of raw data channels.
integer*4 number of profiles.
integer*4 number of raw data channels.
integer*4 number of channels in compressed rut file.
integer*4 number of full-words/buffer in elevation "file."
integer*4 array with number of times the raw signal glitched.
integer*4 number of full-words/buffer in slope profile "file."
integer*4 number of samples/buffer for slope profile.
integer*4 number of samples/buffer for rut & elevation.
integer*4 number of full-words/buffer in rut "file."
integer*4 total number of samples of raw data (same as PASSA).
integer*4 array with number times the raw signals saturated.
integer"'4 total number of samples of slope profile.
integer*4 total number of samples of rut & elevation.
rea1*4 array for physical offsets.
character* 16 name of test operator.
integer*4 actual number of AID scans (i.e., points/channel).
rea1*4 print interval.
real*4 array of 4 coefficients used for 1/4 car.
real*4 starting print position.
rea1*4 stopping print position.
integer*4 not used in this version.
character* 16 name of route.

64

Table 7. Variables stored in the SETCOM common block and include file - continued.

Variable

RPROF
RRUT
CSAMP
SCLFA
SCLFDX
SCLFH
SCLFRI

SCLFV
STM
SURF
TFILE
TCONFI
TRIM
TSTCON
TSTTYP

TSTSPD
UNITS
XCURS
XDUCGN
XDUCT
XRANGE
VELMAX
VELMIN
ZDATA

Type

log*4
log*4
real*4
real*4
real*4
real*4
real*4

Definition

. true. if there is a right profile signal.

.true. if there is a right rut signal.
number of samples per foot
scale factor needed to convert acceleration to m/s/s.
scale factor needed to convert DELTAX tom.
scale factor needed to convert height to m.
scale factor for roughness. Units would normally be
height/DELTAX; this is added to get in/mi. (for US units,
SCLFRI = 5280.)

real*4 scale factor needed to convert speed to mis.
real*4 array of 16 coefficients used for l/4 car.
character*16 type of road surface.
character* 16 test file name.
integer*2 test configuration number (1 - 10 valid values).
integer*4 decimation ratio for rut and elevation data.
character*32 test configuration name (e.g. 'Left Profile').
integer*2 status of data file. 0=raw test, l=bounce, 2=processed, 3=raw

after check for saturation. 4=speed signal too low, can't
process. 5=bounce test that has been checked. 6=bounce test

integer*2
character* 8
real*4
real*4
integer*2
real*4
real*4
real*4
real*4

that has been processed. 7=file was ruined during processing.
nominal test speed in mi/h.
array for channel units.
cursor position last used in plotting.
array for transducer gains.
array of transducer types: 0,1, or 2
range covered in last plot.
maximum speed found during test.
minimum speed found during test
array of zero data values. Convert integer values into
engineering units with the equation: REAL = GAIN(I) *
float(INTEGER) - ZDATA(I)

65

SET(l)-(32)
SET(33)-(64)
SET(65)-(96)
SET(97)-(160)
SET(161)-(224)
SET(225)-(240)
SET(24 l)-(256)
SET(257)-(288)
SET(289)-(320)
SET(321)-(384)
SET(385)-(416)
SET(417)
SET(418)
SET(419)
SET(420)
SET(421)
SET(422)
SET(423)
SET(424)
SET(425)-(426)
SET(427)
SET(428)
SET(429)-(430)
SET(43 l)-(432)
SET(433)-(436)
SET(437)-(444)
SET(445)-(452)
SET(453)-(460)
SET(461)-(466)
SET(467)-(474)
SET(475)-(490)
SET(491)-(492)
SET(493)
SET(494)
SET(495)
SET(496)
SET(497)
SET(498)
SET(499)
SET(500)
SET(501)
SET(502)
SET(503)
SET(504)
SET(505)
SET(506)
SET(507)
SET(508)

Table 8. Equivalences used for the SET variables.

GAIN
ZDATA
AMPGN
CIDD
UNITS
IOFFS
XDUCT
XDUCGN
AMPGA
OFFS
CMT
IYR
IM
IDAY
Ill
IMIN
ISEC
TCONFI
TSTSPD
SAMP
IDMODE
IDN
PASSA
MAXLEN
DIRECT
ROUTE
OPER
SURF
LANE
TFILE
TSTCON
RAWIX
NCHAN
ADSI'RT
ADSTOP
ICHHl
ICHAl
ICHV
ICHA2
ICHH2
ICHH3
ICHH4
ICHH5
Il..PRF
IRPRF
Il..IRI
IRIRI
IVEL

.66

SET(509)
SET(510)
SET(511)
SET(5 l 2)-(526)
SET(527)-(528)
SET(529)-(530)
SET(53 l)-(532)
SET(533)-(548)
SET(549)-(550)
SET(55 l)-(552)
SET(553)-(554)
SET(555)-(556)
SET(557)-(558)
SET(559)-(590)
SET(59 l)-(598)
SET(599)-(600)
SET(601)-(602)
SET(603)-(604)
SET(605)-(606)
SET(607)-(608)
SET(609)-(610)
SET(61 l)-(612)
SET(613)-(614)
SET(615)-(616)
SET(617)-(618)
SET(619)-(620)
SET(621)-(622)
SET(623)-(624)
SET(625)-(626)
SET(627)
SET(629)-(630)
SET(631)
SET(633)-(634)
SET(635)-(636)
SET(637)-(638)
SET(639)-(640)
SET(641)-(642)
SET(643)-{644)
SET(645)-(646)
SET(647)-(648)
SET(649)-(664)
SET(665)-(680)
SET(681)-(696)
SET(697)-(712)
SET(713)-(714)
SET(715)-{716)
SET(717)-(718)

Il..R
ICR
IRR
RESERVED
NCHRAW
NCHPRF
NCHRUT
RESERVED
LPROF
RPROF
LRUT
CRUT
RRUT
srM
PRM
NPSAMP
NRSAMP
NBUFFW
NRUTFW.
NPRFFW
NELVFW
NSPTOT
NSRTOT
DEL.TAX
DXTRIM
TRIM
LNGWAV
COFINT
MAXBUF
NBUFS
NSAMP
TSTTYP
SCLFA
SCLFDX
SCLFH
SCLFV
HILAT
H2LAT·
H4LAT
HSLAT
LSAT
NSAT
LGLTCH
NGLTCH
VELMIN
VELMAX
SCLFRI

• STATCOM - defines several variables that describe the status of the system,
which are equivalenced to arrays STAT and TVOL in the unlabelled common block.
Table 9 defines these variables.

File Access
This subsection describes the subroutines that deal with the binary data files that contain

the measures from the profilometer.

Quick Reference

RDSET - Read in SETUP array from a binary file.
RDTAPD (HANDLE, ARRAY, WHICH, OFFSET, NS:MP, IERR) - Read numerical

data from processed file.
RDTAPE (HANDLE, ARRAY, OFFSET, NBYTES, IER)- Read binary data.
TSTDIS - Display summary of test parameters.
UPDSET (HANDLE) - Update the SETUP array that begins the current data file.
WRTAPE (HANDLE, ARRAY, OFFSET, NBYTES, IER)-Write binary data.
WRTSET-Write the SETUP array to a binary file.

Subroutine Descriptions

RDSET rdwrtset.obj

Read in SETUP array from drive C (bubble). The name of the file is SETUP.SET.

$INCLUDE: 'SETCOM' The SETUP array is contained in a common block.

RDTAPD (HANDLE, ARRAY, WHICH, OFFSET, NSMP, IERR) rdtapd.obj

This subroutine reads numerical data from tape. It allows the calling program to treat
the data on tape as if it were contiguous, instead of the interleaved format that is actually
used.

➔ HANDLE integer*2
f- ARRAY real*4
➔ WHICH integer*2

➔ OFFSET integer*4
H NSMP integer*4

➔ IERR integer*2

handle for tape file.
array in memory that holds the data read from the tape.
code for data type. l=slope profile, 2=rut stuff, 3=profile
elevation.
number of samples to skip before 1st
number of samples to read. If NS:MP is too large and goes
beyond the range of data existing on tape, the subroutine will
reset NSMP to the number of samples actually read.
error return code. 0=cool.

67

Name

BOUNYN
CALCON
CALTIM
CALYN
FINIT
LFILE
PFILE
TCDATE
TCTIME
TINIT
TIDATE
TI.TIME
TNAME

Table 9. Variables from the STATCOM include file.

integer"'2
integer"'2
integer"'2
integer"'2
integer"'2
character"' 16
character"' 16
character"' 8
character"' 8
integer*2
character"' 8
character"' 8
character"' 8

Definition.

this is a 1 if a bounce test has been done since power up.
configuration number at the time of the last calibration.
time in seconds of the last calibration.

· this is 1 if a calibration has been done since power up.
this is a 1 if a file has been sele,cted for processing.
the name of the last test file.
the name of the file being processed.
date when the tape was created.
time when the tape was created
this is a 1 if a tape has been loaded.
date when the last file was created.
time of the last file creation.
name assigned to the tape.

68

$INCLUDE: 'SETCOM' the subroutine uses the variables in this common block that
describe the layout of the processed data in the file. These
include the number of channels in each sector, the number of
points, full-words, etc.

RDTAPE (HANDLE, ARRAY, OFFSET, NBYTES,IER)

Read binary data from tape or disk file.

➔ HANDLE integer*2 file handle.
+- ARRAY integer*2 destination array for data.
➔ OFFSET integer*4 Offset into file 0=start.
➔ NBYfES integer*4 number of bytes to read.
+- IER integer*2 error return 0=no error,

$INCLUDE:'HANDLES' includes a few integer*4 variables.

TSTDIS

rdwrtape.obj

tstdis.obj

Display information about the data in a file using information from the SETCOM header
block. If PASSA < 1, file is taken from TFILE and the bottom half of the screen is left
blank. If PA SSA > 0, then it is an existing data file and extra information is shown in the
bottom 1/2 of the screen. This subroutine requires a file named TSTSCR. that contains the
screen coordinates of the stuff that is displayed.

$INCLUDE:'STATCOM' contains the name of the default file.
$INCLUDE:'SETCOM' the SETUP array is contained in a common block.

UPDSET (HANDLE) rdwrtset.obj

Update the SETUP array that begins the current data file. This subroutine is used when
some of the SETUP variables have been modified in some way.

➔ HANDLE integer*2 file handle.

$INCLUDE:'SETCOM' The SETUP array is contained in a common block.

WRT APE (HANDLE, ARRAY, OFFSET, NBYTES, IER)

Write binary data to tape or disk file.

➔ HANDLE integer*2 file handle.
➔ ARRAY integer*2 array containing data.

rdwrtape.obj

➔ OFFSET integer*4 Offset into file 0=start.
➔ NBYTES integer*4 number of bytes to read.
f- IER integer*2 error return 0=no error.

$INCLUDE:'HANDLES' includes a few integer*4 variables.

WRTSET rdwrtset.obj ·

Write the SETUP array to a file in drive C (bubble). The name of the file is
SETUP.SET.

$INCLUDE:'SETCOM' the SETUP array is contained in_ a common block.

Initialization

This subsection describes the subroutines that initialize the hardware and software of
the profilometer.

Quick Reference

ADCHECK---Check the calibration of the ND and DI A converters.
INITP-Initialize status variables and check the AID board and the floating point

processor.
LOADTP-Load and initialize tape.
SETUPS-Edit the transducer information.
UNLDTP-Unload the tape.

Subroutine Descriptions

ADCHECK

Check the calibration of the AID and DI A converters.

ode heck.obj

INCLUDE:'IOPARMS' contains some parameters needed in switching channel 7
inputs.

First, both inputs of channel 7 on the AID converter are grounded and sampled for one
second. Then, a 2.5-volt reference is switched to the input of channel 7 on the AID
converter and sampled for one second. The first reading (average for a second) is
subtracted from the second reading and the difference is printed as the "corrected reference
voltage." if the measured value is not within .015 volts of 2.5, then a warning message is
printed.

The DIA is checked somewhat differently. The DIA is switched to the inputs of channel
7 of the AID converter and two voltages (±2.5} are put out and sampled. The difference is

70

then compared to 5.0 volts. If the difference is not within .03 volts of 5 volts then a
warning message is printed.

INITP initp.obj

This subroutine (1) initializes all status variables and reads in the last setup recorded on
the bubble drive, (2) checks the Data Translation board by commanding it to execute a self
test, and (3) exercises the floating point processor to ensure correct operation.

INCLUDE:'IOPARMS' contains some parameters needed to control the Data
Translation board.

INCLUDE:'ST ATCOM' contains status variables to be initialized.
INCLUDE:'SETCOM' contains setup variables read in from bubble.

LOADT loadtape.obj

Prepare the tape for data storage. If it is a new tape, then a file called NAME.VOL is
created and all tape status and file variables are initialized. If it is an old tape, then the file
NAME.VOL is read and the tape name, creation date, and last file name are printed on the
screen. The drive part of the name is used to set the default drive for subsequent data
storage.

INCLUDE:'STATCOM' contains tape volume information.
INCLUDE:'SETCOM' contains the name of the next test drive and file name.

SETUPS setup.obj

Write all transducer setup information to the screen and allow editing of it by an expert
user. This information includes transducer names, units, types, and gains as well as
nominal amplifier gains. In addition, the actual amplifier gains and the full-scale values (as
determined by the last calibration) are printed but cannot be edited.

INCLUDE:'SETCOM' contains all transducer setup variables.

UNLDTP unloadtp.obj

This subroutine (1) updates the file NAME.VOL with new volume information, (2)
causes all directory buffers to be written to tape, and (3) commands the tape to rewind and·
be unloadable.

INCLUDE:'STATCOM' contains tape volume information.
INCLUDE:'SETCOM' contains the name of the last test drive and file name.

71

1/0 Subroutines

This subsection describes the subroutines that interface the profilometer software to the
signal-conditioning unit, the Data Translation AID board, and the calibration control board.

Quick re[erence

A2DONE (ICH, I GAIN, FREQ, NS AMPS, AV, VNSE}-Collect AID on channel ICH.
CALDA (VHet calibration DI A.
CALREL (ICH, ION)-Switch calibration relay.
DTCLEAR--Clear the Data Translation board.
DTCLOCK (F)-Set the AID clock on the Data Translation board.
FILCLK (F)-Set the filter clock.
INITIO--Initialize I/0.
RESTOR-Restore analog signal-conditioning unit.
SET AD (AD)-Set up .the AID parameters on the Data Translation board.
SETDMA (DM)-Set up the DMA controller.
TWAIT (T}-Wait for a time.
ZOFF (ICH, OFFSET}-Set the offset on an analog card.

Subroutine Descriptions

A2DONE (ICH, !GAIN, FREQ, NSAMPS, AV, VNSE) iosubs.obj

Sample a channel at a specified frequency for a specified number of samples. Then
calculate the average value and the Rl'v1S noise.

--+ ICH
--+ IGAIN

integer*2
integer*2

--+ FREQ real*4
--+ NSAMPS integer*2
+- AV rea1*4
+- VNSE real*4

channel to sample Os ICH S 47.
gain for AID (0= gain of 1, 1 = gain of 2, 2=gain of 4, 3=
gain of 8).
sampling frequency.
number of samples O s; NSAMPS s; 32767.
average voltage. '
Rl'v1S noise.

'$INCLUDE: 'BUFCOM' collected data are placed in the array buffer.
$INCLUDE: 'IOPARMS' defines addresses or constants related to the hardware.

CALDA(V) iosubs.obj

Set the calibration D/ A to V volts. The calibration enable relay is also switched and
remains on.

--+V rea1*4 voltage of calibration DI A.

72

$INCLUDE 'IOPARMS' defines addresses or constants related to the hardware.

CALREL (ICH, ION) iosubs.obj

Switch the calibration relay on an analog channel on or off.

-+ ICH integer*2 channel number O ~ ICH ~ 47.
-+ ION integer*2 ION =0 is off and ION+ 1 is on.

$INCLUDE 'IOPARMS' defines addresses or constants related to. the hardware.

DTCTEAR iosubs,obj

Send the clear command to the Data Translation ND board.

$INCLUDE 'IOPARMS' defines addresses or constants related to the hardware ..

DTCLOCK(F) iosubs.obj

Set the ND clock on the Data Translation ND board.

-+ F real*4 ND clock frequency (Hz).

$INCLUDE 'IOPARMS' defines addresses or constants related to the hardware . . ,

FILCLK (F) iosubs.obj

Set the cutoff frequency of the Butterworth filters.

-+ F real*4 filter clock frequency (Hz).

$INCLUDE· 'IOP ARMS' defines addresses or constants related to the hardware.

INIDO iosubs.obj

Initialize the 1/0 stuff: (1) initialize IBM analog interface board, (2) initialize the 8255
chip and set up the strobe lines, (3) do a restore to initialize all analog boards, (4) set up the
master mode of the 9513 timer chip, (5) set the mode of counters# 4 and 5, and (6) set the
values for counters 4 and 5.

$INCLUDE 'IOPARMS' defines addresses or constants related to the hardware.

73

RESTOR iosubs.obj

Tum off all calibration relays, shunt cal relays, and disable the calibration DIA relay.
Set the offset D/As on all the cards to the values recorded in the array IOFFS. This
function restores the analog card states after the analog power has been switched off then
on (usually for diagnostic tests).

$INCLUDE 'IOP ARMS' defines addresses or constants related to the hardware.
$INCLUDE: 'SETCOM' uses the array IOFFS to restore the offsets.

SETAD(AD) iosubs.obj

Set up the AID parameters on the Data Translation board. The gain, start and end
channels, and number of conversions are sent to the AID board.

➔ AD integer*2 array for setup parameters where AD(l)=gain, AD(2)=
starting channel, AD(3)= end channel, AD(4)= number of
conversions, and AD(5)=?.

$INCLUDE 'IOPARMS' defines addresses or constants related to the hardware.

SEIDMA(DM) iosubs.obj

Set up the DMA controller for data collection. The starting address, number of bytes to
be transferred, and the page number are transferred to the DMA controller on the PC ·
motherboard.

➔ DM integer*2 array for the DMA parameters where DM(l)= low byte of·
the address, DM(2)= high byte of the address, DM(3)=low
byte of the number of transfers -1, DM(4)=high byte of the
number of transfers -1, DM(5)= page.

TWAIT(T) iosubs.obj

Wait for a time T then return to caller.

➔ T real*4 time to wait.

ZOFF (ICH,OFFSET) iosubs.obj

Set the DI A on the analog channel # ICH to OFFSET.

➔ ICH integer*2 channel number Os; ICH s; 47.
➔ OFFSET integer*2 value for 8-bit DIA -128 S: OFFSETS: 127.

74

$INCLUDE 'IOPARMS' defines addresses or constants related to the hardware.

Plotting

This subsection describes the subroutines that scale and plot data _or use the Halo
graphics subroutines.

Quick Reference

GETELV (SKPLOT, NSMP, MOVA Vl, MOV AV2, QNDPLT, HANDLE, IERR) - Get
elevation profiles from tape.

GETLEN (X, XLL, XUL, UNITS, TITLE, PRO:M:PT, IRET) - Prompt the user for
some type of length measure or range.

GRCURS (!START, IPLT, KCURS, NPTS, IMAX, NPTOT, NPMAX,IDPDT, XMIN,
XMAX, XSTART, DX, YMIN, YMAX, ICH)-Wait for
the user to hit a key, then update plot parameters.

LABEL (X, STRING, L) - Convert a real number into a string for Halo.
LOGO - Draw the logo for the profilometer.
PLOT (MODE, IACTIV, NCHAN, NPTS, ICH, US, ITOT, DX, XMIN, XMAX,

XSTART, KCURS, YMIN, YMAX, NAME, UNITS,
XNAME, XUNITS, GAIN, OFF, IUPDT, !START,
NPTOT, NPMAX, TITLE) - Plot data contained in
common array using Halo subroutines.

PL TELV (HANDLE, QNDPL T) - Set up plots of profile elevation.
PL TRAW (HANDLE) - Set up plots of raw signals.
PLTRUT (HANDLE)- Set up plots of rut depth and roughness signals.
PLTSEL (NCHAN, NAME, UNITS, XNAME, XUNITS, DX, XMIN, XSTART,

XRANGE, YRANGE, YMXRNG, NPTS, NPMAX,
NPTOT, KCURS, ICH) - Prompt user for the selection of

~ channels and plotting ranges.
SCLDWN (X, XNORM, XDOWN) - Scale a variable down.
SCLUP (X, XNORM, XUP) - Scale a variable up.
TIKSET (XMIN, XMAX, TICK, TMIN, TMAX, NTICK) - Detennine first and last tick

marks in a given range.

Subroutine Descriptions

GETELV (SKPLOT, NSMP, MOVA VI, MOVAV2, QNDPLT, HANDLE, IERR)
getelv.obj

Get elevation profiles from tape so they can be plotted. GETELV calls the subroutine
RDTAPD to handle the peculiar file structure used on the tape, and performs the necessary

75

(

second integration if the plot is detailed (rather than quick-n-dirty). It calls LOPASS to
perform the moving average filtering.

➔ SKPLOT integer*4 number of samples to skip before plotting. This number
should be calculated as X/DX.

➔ NSMP integer*4
➔ MOY A Yl integer*4
➔ MOY A V2 integer*4
➔ QNDPLT logical
➔ HANDLE integer*2
~ JERR integer*2

$INCLUDE:'SETCOM'

$INCLUDE:'BUFCOM'

number of samples to plot.
number of samples in moving average.
number of samples in 1/2 moving average.
switch for quick-n-dirty plotting.
handle for file with processed profile.
error code. 0=cool.

variables in this common block describe the layout of the
data in the file. These include the number of channels in
each sector, the number of points, full-words, etc. It also
looks at the TSTTYP variable to see if it is plotting a road
test or a bounce test.
the signals read from the file are put into the array PCBUFR.

GETLEN (X, XLL, XUL, UNITS, TITLE, PROMPT, IRET) get/en.obj

Prompt the user for some. type of length measure or range. GETI..EN is used to get plot
scales, baselengths, and so forth. The menu provided the user will have XLL as the first
option, XUL as the last, and will include X in the middle. The user will be given a list of
values to select from the menu, and also the options to cancel and to select a custom value
that is not explicitly included on the list.

H X real*4 number that is updated by the subroutine.
➔ XLL real*4 lower limit of allowable values for X.
➔ XUL real*4
➔ UNITS .char*8
➔ TITLE char*32
➔ PROMPT char*60
~ RET integer*2

upper limit of allowable values forX.
name of units used for X.
heading for menu used to get X from user ..
prompt to use for custom entry.
return code. 0=ok, 1 =cancel.

GRCURS (ISTART, IPLT, KCURS, NPTS, IMAX, NPTOT, NPMAX,IUPDT, XMIN,
XMAX, XSTART, DX, YMIN, YMAX, ICH)

plotsubs.obj

Wait for the user to hit a key, then interpret any cursor keys, and update plot parameters
as necessary.

➔ !START intege~4 offset (in file) to 1st point in plot.

76

H IPLT
H KCURS
H NPTS
. ➔ IMAX
➔ NPTOT
➔ NPMAX

+- IUPDT

H XM1N
HXMAX
➔ XSTART
➔ DX
HYMIN
HYMAX
➔ ICH

integer*2
integer*4
integer*4
integer*2
integer*4
integer*4

integer*2

rea1*4
rea1*4
rea1*4
rea1*4
rea1*4

·rea1*4
integer*2

LABEL (X, STRING, L)

number of active plot (1 or 2).
offset to present cursor position.
number of points on the screen.
number of plots on screen (l or 2) .
number of points in data file;
max number of points that can be plotted. (This is a function
of the common block size.)
return cod. 0 = I and KCURS updated; 1 = changed limits
for one plot; 2 = changed limits for 2 plots; 3=quit.
minimum x value.
maximum x value.
value of x at start of file (i=0).
sample interval.
array with min y values for each channel in file.
array with max y values for each channel in file.
array with id no's of plotted channels.

plotsubs .obj

Convert a real number into a string for Halo.

➔ X rea1*4
+- STRING char*lO

+- L integer*2

LOGO

number to be converted.
string representation of X, with beginning and ending \
characters for Halo.
number of characters in STRING. (Not ~,ounting begin'ning
and ending \'s.)

logo.obj

This subroutine draws the logo for the profilometer using Halo subroutines. It then
waits for the user to press a key to continue. If the key pressed is p or P, a hard copy is
made. A text file named LOGO. contains the coordinates and words that are displayed on
the screen. If this file is not present, an error will occur. · · ·

PLOT (MODE, IACTIV, NCHAN, NPTS, ICH, IIS, !TOT, DX, XMIN, XMAX,
XSTART,. KCURS, YMIN, YMAX, NAME, UNITS,
XNAME, XUNITS, GAIN, OFF, IUPDT, !START,
NPTOT, NPMAX, TI1LE)

plot.obj

Plot data contained in common array using Halo subroutines. A cursor is displayed
along with printed values of the data at that point. The subroutine plots the data and then
waits for keyboard inputs from the user. Keys that request cursor movement or changes in

77

scaling of the y axis are handled within the subroutine. Keys that request a change in the
scaling of the x axis or End cause the subroutine to return.

➔ MO:BE integer*2
.HIACTIV integer*2
➔ NCHAN integer*2
,➔ NPTS integer*4
➔ ICH integer*2
➔ IIS integer*4
➔ ITOT integer*2
➔ DX real*4
H XMIN real*4
HXMAX real*4
➔ XSTART real*4
H KCURS integer*4
H YMIN real*4
H YMAX real*4
➔ NAME char*8
➔ UNITS char*8
➔ XNAME char*8
➔ XUNITS char*8
➔ GAIN real*4
➔ OFF real*4
H IUPDT integer*2

H !START integer*4
➔ NPTOT integer*4
➔ NPMAX integer*4
➔ FNAME char*30

$INCLUDE:'BUFCOM'

data type: Cl=integer*2; l=real*4.
the active plot (1 or 2) with the cursor.
number of channels to be plotted (1 or 2).
number of points (per channel) to plot.
array with id nos. of the channel(s) being plotted.
offset (in array) to first point to be plotted.
number of channels in buffer.
sample interval (x axis gain).
minimum limit for x values.
maximum limit for x values.
value of X at start of file (i=0).
offset in file to cursor position (0=lst sample).
array of min y limits for all (ITOT) channels.
array of max y limits for all (ITOT) channels.
array of names of all channels.
array of names of units of all of the channels.
name of variable plotted on the x axis.
name of units for variable.plotted on the x axis.
array of channel gains used for integer*2 data.
array of offsets of channels used for integer*2 data.
0=don't redraw; l=rescale y axis on active plot; 2=both
plots, 3=quit. The only values on exit are 2 and 3.
offset (in file) to first point in plot array.
number of samples in file.
max number of points that can be plotted.
title for plots.

the data being plotted are in the 2-D array IBUF (for
integer*2 data) or the 2-D array RDATA (for real*4 data)

PLTELV (HANDLE, QNDPLT) plotelv.obj

This subroutine is used when the user selects either detailed or fast (quick-n-dirty) plots
from the VIEW AND PROCESS DATA menu. It calls subroutines to select how many
profiles will be plotted, which baselengths to use for the moving average filter, and what
ranges to plot. It calls the Halo subroutines to switch from a text display to a graphics
display. It then calls the subroutine GETEL V to get the data from the open file, and then
the subroutine PLOT te> plot that data. Depending on the return code from PLOT, it will
either switch back to the. text display and return, or call GETELV using a different range
and plot the new range.

. '

78

➔ HANDLE integer*2 handle to data file.
➔ QNDPLT logical .true. if its a quick and dirty plot.

$INCLUDE:'BUFCOM' the signals are read from the file and put into the array
PCBUFR.

$INCLUDE:'SETCOM' the subroutine uses the variables in this common block that
describe the layout of the data in the file.· These include the
number of channels in each sector, the number of points,
full-words, etc. It also looks at the TSTTYP variable to see
if it is plotting a road test or a bounce test.

$INCLUDE:'STATCOM' the name of the open file is contained in common, and is
shown on the plots.

$INCLUDE:'HANDLES' contains some integer*4 variables used to read from the data
file.

PL TRAW (HANDLE) plotraw.obj

This subroutine is used when the user selects PLOT RAW DAT A from the VIEW AND
PROCESS DATA menu. It calls subroutines to select which signals will be plotted and
what ranges to plot. It calls the Halo subroutines to switch from a text display to a
graphics display. It then calls the subroutine RDT APE to get the data from the open file,
and then the subroutine PLOT to plot that data. Depending on the return code from PLOT,
it will either switch back to the text display and return, or call RDT APE using a different
range and plot the new range.

$INCLUDE:'BUFCOM' the signals are read from the file and put into the array
IBUF.

$INCLUDE:'SETCOM' the subroutine uses the variables in this common block that
describe the layout of the data in the file. These include the
number of channels and the number of points. It looks at the
TSTTYP variable to see if it is plotting a road test or a
bounce test.

$INCLUDE:'STATCOM' the name of the open file is contained in common, and is
shown on the plots.

$INCLUDE:'HANDLES' contains some integer*4 variables used to read from the data
file.

PL TRUT (HANDLE) p/otrut.obj

This subroutine is used when the user selects PLOT RUT & ROUGHNESS from the
VIEW AND PROCESS DATA menu. It calls subroutines to select which channels will be
plotted, which baselengths to use for the moving average smoothing, and what ranges to
plot. It calls the Halo subroutines to switch from a text display to a graphics display. It

79

calls the subroutine RDT APD to get the data from the open file. If it is speed or rut data,
the subroutine LOPASS is used to filter the data. For roughness data, PLTRUT does the
processing. The subroutine PLOT is then called to plot the smoothed data. Depending on
the return code from PLOT, it will either switch back to the text display and return, or plot
data from a different range. .~.

➔ HANDLE integer*2 handle to data file.

$INCLUDE:'BUFCOM' the signals are read from the file and put into the array
PCBUFR.

$INCLUDE:'SETCOM' the subroutine uses the variables in this common block that
describe the layout of the data in the file. These include the
number of channels in each sector, the number of points,
full-words, etc. It also looks at the TSTTYP variable to see
if it is plotting a road test or a bounce test.

$INCLUDE:'STATCOM' the name of the open file is contained in common, and is
shown on the plots.

PLTSEL (NCHAN, NAME, UNITS, XNAME, XUNITS, DX, XMIN, XSTART,
XRANGE, YRANGE, YMXRNG, NPTS, NPMAX,
NPTOT, KCURS, ICH) plotsel.obj

This subroutine prompts the user for the selection of channels and plotting ranges. It is
called by the PL TRAW, PL TEL V, and PL TRUT subroutines.

➔ NCHAN integer*2 number of channels.
➔ NAME c~ar*8 . array with names of each channel.
➔ UNITS char*8 array with units for each channel.
➔ XNAME char*8 name of variable plotted on x axis (time, etc.).
➔ XUNITS char*8 name of units for x axis.
➔ DX rea1*4 sample interval.
tt XMIN real *4 minimum limit of plotting range.
➔ XST ART rea1*4 x value at start of file (i=O).
tt XRANGE real*4 plotting range for x axis.
tt YRANGE real*4 array with plotting ranges for y axis.
➔ YMXRNG real *4 array with max allowable range for each channel.
+- NPTS integer*4 number of points to plot
➔ NPMAX integer*4 maximum number of points that can be plotted.
➔ NPTOT integer*4 maximum number of points in file.
tt KCURS integer*4 position of cursor in file (0=lst point).
tt ICH integer*2 array containing the 2 channels to be plotted.

80

SCLDWN (X, XNORM, XDOWN) plotsubs.obj

This subroutine scales a variable down so that it has only one significant digit, with that
digit being a 1, 2, or 5. (For example, 23.4 would be scaled down to 20; 0.07 would be
scaled down to 0.05.)

➔ X

+- XNORM
+- XDOWN

real*4
real*4
real*4

SCLUP (X, XNORM, XUP)

number to be scaled up.
normalized value for X.
scaled down value for X.

plotsubs.obj

This subroutine scales a. variable up so that it has only one significant digit, with that
digit being a 1, 2, or 5. (For example, 23.4 would be scaled up to 50; 0.07 would be
scaled up to 0.1.)

➔ X real*4
+- XNORM real*4
+- XUP real*4

number to be scaled up.
normalized value for X.
scaled up value for X.

TIKSET (XMIN, XMAX, TICK, TMIN, TMAX, NTICK)

Determine first and last tick marks in a given range.

➔ XMIN real*4 minimum limit in range (eng. units).
➔ XMAX real*4 maximum limit to range (eng. units).
➔ TICK real*4 tick interval (eng. units).
+- TMIN real*4 first tick interval within range (eng. units).
+- 1MAX real*4 last tick interval within range (eng. units).
+- NTICK integer*2 number of ticks within range.

Printing

These subroutines support the menu option to PRINT NUMERICS ..

Quick Reference

PR1LF (LSCR, LLPT, LFL)-· Add carriage returns after each line.
PRTNUM (HANDLE) - Print numerics averaged over a specified interval.
PUTYN (YESNO, IROW, ICOL) - Put Y or N in specified screen location.

plotsubs.obj

YESNOL (YESNO,IROW,ICOL,IRET)- Get Yes/No answer and set logical variable.

81

Subroutine Descriptions

PRTLF (LSCR, LLPT, LFL) prtnwn.obj

Add carriage returns after each line .

➔ LSCR logical
logical

. true. if PRTNUM is currently printing to the screen.
➔ LLPT .true. if PRTNUM is currently printing to the printer

(Fortran IO unit #6) .
➔ LFL logical . true. if PRTNUM is currently printing to a file (Fortran IO

unit #7). ·

PRTNUM (HANDLE) prtnwn.obj

This subroutine allows the user to print numerics averaged over a specified interval,
based on the channels stored in the rut part of a data file. (These channels are the rut depth
signals, the IRI roughness signals, and the decimated velocity channel.) The printouts can
be shown on the screen, sent to the printer, and sent to a text file. This subroutine requires
a file called PRTSCR that contains the text and coordinates used for the screen that shows
the options to the user.

➔ HANDLE integer*2 handle for data file.

$1NCLUDE:'SETCOM' the subroutine uses the variables in this common block that
describe the layout of the processed data in the file. These
include the number of channels in each sector, the number of
points, 4-byte reals; etc.

$INCLUDE:'BUFCOM' the signals are read from the file and put into the array
PCBUFR, where they are averaged as needed for printing.

$1NCLUDE:'STATCOM' contains the name of the open file.

PUTYN (YESNO, IROW, ICOL) prtnwn.obj

Put Y or N in specified screen location, based on logical variable YESNO.

➔ YESNO logical if .true., put Y. If .false., put N.
➔ IROW integer*2 row on text screen to locate the YIN character.
➔ ICOL integer*2 column on text screen to locate the YIN character.

YESNOL (YESNO,IROW,ICOL,IRET) prtnwn.obj

Get Yes/No answer and set logical variable. (Similar to the YESNO subroutine in the
Fortran Extensions described in appendix C.)

H YESNO iogical variable that is updated by the subroutine.

82

➔ IR.OW integer"'2 row on text screen to locate the YIN character.
integer"'2 column on text screen to locate the YIN character. ➔ ICOL

+- IRET integer*2 return code that tells which cursor key was used to accept
YESNO value. (Sarne values as used in Fortran extension
subroutines.)

Program Control

This subsection describes the main profile program and the major subroutines that
create the menus used to select the various options available for the profilometer. ·

Quick Reference

BATCH (DR) - Process a list of data files.
GOAHED (HANDLE) -Warn the user that some processing needs to be done.
IOEX - Present a menu of options to exercise the input/output hardware.
MAIN - Show the Logo, then offer the main menu to the user.
MEASURE - Generate the menu for measuring data and call the appropriate subroutines.
PROCESS- Generate the menu for viewing data and call the appropriate subroutines.

Subroutine Descriptions

BATCH(DR) batch.obj

Process a list of data files. The signal processing subroutines CHKSA T and PRFCMP
are used as needed to convert files with raw data to files with profile and rut depth.

+.-+DR char*l letter indicating current drive.

$1NCLUDE:'HANDLES' contains some integer*4 variables used to read from the data
file.

$INCLUDE:'SETCOM' includes the variables TSTTYP and ITSOK, used to enable
and disable menu options based on the status of the open
file.

GOAHED (HANDLE) process.obj

Warn the user that some processing needs to be done and that it might take a few
minutes. If the user answers yes, process the data.

➔ HANDLE integer*2 handle of open file.

$INCLUDE:'SETCOM' the subroutine looks at the variables TSTTYP and ITSOK to
. see what needs to be done with the file.

83

IOEX ioex.obj

Presents a menu of options to exercise the input/output hardware of the profilometer.
These options are used in tracing hardware problems and performing comprehensive
calibrations.

$INCLUDE:'IOP ARMS' defines addresses or constants related to the hardware.

MAlN profmain.obj

The main program first shows the logo, and after a key has been pressed, performs
some once~only initializations. Then it offers the main menu to the user.

$INCLUDE:'BUFCOM'
$INCLUDE:'SETCOM'
$INCLUDE:'STATCOM' includes the date, time since last calibration, current file

name, and other status information in a common block.

MEASURE measure.obj

Generates the menu for measuring data and calls the appropriate subroutines based on
the items selected from that menu.

$INCLUDE:'STATCOM' includes the date, time since last calibration, current file
name, and other status information in a common block.

PROCESS process.obj

Generate the menu for viewing data and call the appropriate subroutines based on the
items selected from that menu. It first writes all of the current status information (from the
STATCOM common block) into a temporary file, which is restored before exiting the
subroutine.

$INCLUDE:'STATCOM' includes the current file name.
$INCLUDE:'HANDLES' contains some integer*4 variables used to read from the data

file.
$INCLUDE:'SETCOM' the subroutine mainly uses the variables TSTTYP and

ITSOK to enable· and disable menu options based on the
status of the open file.

84

Signal Processing

This subsection describes the subroutines used to process the measured transducer
signals and the other signals derived from them.

Quick Reference

A VEVEL (IBUF, NCl, NS, RBUF, NC2, TRIM, GAIN, BIAS) -Average and
decimate a (speed) signal.

CHKSAT (HANDLE, AUTO) - Check the raw transducer signals for saturation.
DEBIAS (ARRAY, NCH, NS, BIAS) - subtract bias from signal in real*4 array.
HIPASS (ARRAY, NCH, Nl, N2, N3, N4, N5, MOVAVl, MOVAV2)-Filter a signal

with a high-pass filter.
Function IA VE (ARRAY, NCH, NS) -Average value of signal in integer*2 array.
LOPASS (ARRAY, NCH, NS, MOVAV1,"MOVAV2)- Smooth a signal.
LRSLOP (ARRAY, NDIM, NSAMP, SLOPE) - Calculate slope of signal using a linear

regression.
l\11NV (ARRAY, N, D, LARRA Y, MARRA Y) - Matrix inversion.
PRFCMP (HANDLE) - Convert raw data into slope profile, rut depth, IR.I roughness,

and elevation profile.
PRFELV (BUFl, NCl, NS, BUF2, NC2, TRIM, DX, C, ENDELV) - Compute

compressed elevation profile from slope.
PRFIRI (BUFl, BUF2, Xl, X2, X3, X4, ROUGH) - Filter a slope profile signal using

the IRI quarter-car simulation. '
Function RA VE (ARRAY, NCH, NS) - Average value of signal in real *4 array.
RUTCMP (HL, HC, HR, NCHRAW, NS, RUT, NCHRUT, TRIM, GAINL, GAINC,

GAINR, ZL, ZC, ZR, HLLAT, HRLAT) - Compute,
average, and decimate a rut depth signal.

SA TMAX (ARRAY, NCH, NS, OFFSET, MAX, COUNT, NSAT, LSAT) - Check raw
data signal for saturation at upper limit.

SATMIN (ARRAY, NCH, NS, OFFSET, MIN, COUNT, NSAT, LSAT) -Check raw
data signal for saturation at lower limit.

, SETSTM - Calculate coefficients for quarter-car simulation.

Subroutine Descriptions

AVEVEL (IBUF, NCl, NS, RBUF, NC2, TRIM, GAIN, BIAS)

Average and decimate a (speed) signal.

-+ IBUF integer*2 2-D input array. Channel 1 is processed.
-+ NCl integer*4 1st dimension(# of channels) for IBUF.
-+ NS integer*4 2nd dimension(# of samples) for IBUF.
+- RBUF real*4 2-D output array. Channel 1 is processed.

I

85

sigsubs.obj

➔ NC2
➔ TRIM
➔ GAIN
➔ BIAS

integer*4
integer*4
real*4 ·
rea1*4

1st dimension (# of channels) for RBUF.
decimation ratio. Every TRIM-th point is kept.
gain for input data: engineering units/count.
bias in input data.

CHKSAT (HANDLE, AUTO)

Check the raw transducer signals for saturation.

➔ HANDLE integer*2 handle for data file that gets checked.

chksat.obj

➔ AUTO integer*2 code indicating interactive or auto modes. 0 = interactive, 1
= don't truncate if error, 2 = truncate if error, 3 =

interactive if error.

$INCLUDE:'BUFCOM'the signals are read from the file and put into the array
PCBUFI for checking.

$INCLUDE:'HANDLES' contains some integer*4 variables used to read from the data
file.

$INCLUDE:'SETCOM' the subroutine uses the variables in this common block that
describe the layout of the data in the file. These include the
number of channels and the number of points. It updates the
variables TSTTYP, VELMIN, VELMAX, ITSOK, and the
arrays NSAT and LSA T to indicate the results of the check.

DEBIAS (ARRAY, NCH, NS, BIAS)

Subtract bias from signal in real*4 array.

H ARRAY
➔ NCH
➔ NS

2~D array. Channel 1 is processed.
1st dimension(# of channels) for ARRAY.
2nd dimension(# of samples) for ARRAY.

sigsubs.obj

➔ BIAS

real*4
integer*4
integer*4
real*4 bias to be subtracte.d from channel #1 in ARRAY.

HIPASS (ARRAY, NCH, Nl, N2, N3, N4, N5, MOVA VI, MOVAV2) sigsubs.obj

This subroutine filters a signal with a hipass filter based on the moving average. If
necessary, the subroutine adds points to the beginning and end of the signal so that the
moving average filter can be applied over the entire length of the signal.

H ARRAY real*4 2-D Input array. Channel 1 is filtered. This array must be
dimensioned to cover (Nl + (N2 + N3 + N4 + N5 +
MOVA VI + 1) samples. The input data should start at the
second position and continue to the end of the array. The

86

output starts at the first position, and continues to the N3-th
position.

➔ NCH integer*4 1st dimension of ARRAY(# of channels).
➔ Nl-NS integer*4 no. of samples in five contiguous regions of memory.
➔ MOVA Vl integer*4 no. of points in moving average.
➔ MOVA V2 integer*4 no. of points to center of moving average (MOVA Vl / 2).

Function IA VE (ARRAY, NCH, NS)

Average value of signal in integer*2 array.

+- IAVJE
➔ ARRAY
➔ NCH

➔ NS

integer*2 average value of channel-1 in ARRAY.
integer*2 2-D input array. Channel 1 is processed.
integer*4 1st dimension(# of channels) for ARRAY.
integer*4 2nd dimension.(# of samples) for ARRAY.

LOPASS (ARRAY, NCH, NS, MOVAVl, MOVA V2)

sigsubs.obj

lopa.ss.obj

This subroutine filters a signal using a moving average as a smoothing (lopass) filter.

~ ARRAY real*4 2-D Input array. Channel 1 is filtered. The data should start
at position 2 and continue to NS + 1. The output starts in
position 1, and corresponds to what used to be the
MOVAVl-th point. (The array gets shifted.)

➔ NCH integer*4 1st dimension of ARRAY(# of channels).
➔ NS integer*4 no. of samples in ARRAY.
➔ MOVA Vl integer*4 no. of points in moving average.
➔ MOVAV2 integer*4 no. of points to center of moving average (MOVA Vl / 2).

LRSLOP (ARRAY, NDIM, NSAMP, SLOPE)

Calculate slope of signal using a linear regression.

➔ ARRAY
➔ NDIM

2-D Input array.
1st dimension of ARRAY.(# of channels.)
2nd dimension of ARRAY. (# of samples.)

sigsubs.obj

➔ NSAMP
+- SLOPE

real*4
integer*4
integer*4
real*4 slope of channel 1 in ARRAY as obtained by

regression against the sample number.
linear

MINV (ARRAY, N, D, LARRA Y, MARRA Y) minv.obj

Matrix inversion subroutirie, taken from the IBM SSP library. The code has been
modified as necessary to compile under Fortran 77.

87

H ARRAY rea1*4
-,-+ N integer*2
+- D real*4
+- LARRAY integer*2
f- MARRA Y integer*2

PRFCMP (HANDLE)

general 2-D square (N x N) array that is inverted.
order of the ARRAY matrix.
determinant of ARRAY.
1-D array needed by :MINV, dimensioned to length N.
1-D array needed by :MINV, dimensioned to length N.

prfcmp.obj

This subroutine does the basic signal processing, converting a data file from an
integer*2 representation of raw data into 3 interleaved real*4 representations of slope
profile, rut depth and IRI roughness, and elevation profile. The subroutine uses the
RDTAPE and WRTAPE subroutines to access the file. Progress of the. processing is
displayed on the screen.

-,-+ HANI)LE integer*2 handle for data file that gets processed.

$INCLUDE:'SETCOM' the subroutine uses the variables in this common block that
describe the raw data, and sets the parameters describing the
layout of the processed data in the file. These include the
number of channels in each sector, the number of points,
full-words, etc.

$INCLUDE:'BUFCOM' the signals are read from the file and initially put into the
array PCBUFI for checking. The array PCBUFR is us.ed
for the computed slope profiles and other output signals.

PRFELV (BUFl, NCl, NS, BUF2, NC2, TRIM, DX, C, ENDELV) sigsubs.obj

Subroutine to compute compressed elevation profile from slope.

-,-+ BUFl real*4
-,-+ NCI integer*4
-,-+ NS integer*4
+- BUF2 real*4
-,-+ NC2 integer*4
-,-+ TRIM integer*4
-,-+ DX real*4
-,-+ C real*4
H ENDELV rea1*4

2-D input array. Channel 1 is processed.
1st dimension (# of channels) for BUFl.
2nd dimension(# of samples) for BUFl.
2-D output array. Channel 1 is processed ..
1st dimension.(# of channels) for BUF2.
decimation ratio. Every TRIM-th point is kept.
sample interval for BUFl.
coefficient to add high-pass filtering to the integration.
as input, starting elevation at beginning of buffer. as output,
elevation at end of buffer.

88

PRFIRI (BUFl, BUF2, Xl, X2, X3, X4, ROUGH) prfiri.obj

This subroutine filters a slope profile signal using the IRI quarter-car simulation. The
accumulated IRI roughness is compressed and stored in a separate array. The IRI
coefficients and the sizes of the arrays are obtained from COMMON. This subroutine will
probably be enhanced to smooth the slope profiles, so it should not be called until the
profiles are stored on tape.

➔ BUFl
+- BUF2
H Xl-X4
H ROUGH

real*4
real*4
real*4
real*4

2-D input array with profile data. Ch-1 is processed.
2-D output array (with rut stuff also.) Ch-1 is replaced.
vehicle response variables, updated every step.
accumulated roughness, updated every step.

$INCLUDE:'SETCOM' the subroutine uses the variables in this common block that
describe the layout of the processed data in the file. These
include the number of channels in each sector, the number of
points, full-words, etc.

Function RA VE (ARRAY, NCH, NS)

Average value of signal in real*4 array.

+- RAVE
➔ ARRAY
➔ NCH.
➔ NS

real*4
real*4
integer*4
integer*4

average value of channel #1 in ARRAY.
2-D input array. Channel I is processed.
1st dimension(# of channels) for ARRAY.
2nd dimension(# of samples) for ARRAY:

sigsubs.obj

RUTCMP (HL, HC, HR, NCHRA W, NS, RUT, NCHRUT, TRIM, GAINL, GAINC,
GAINR, ZL, ZC, ZR, HLLAT, HRLA T)

rutcmp.obj

Compute, average, and decimate a rut depth signal.

➔ HL integer*4
➔ HC integer*2
➔ HR integer*2
➔ NCHRA W integer*2

➔ NS integer*4
+- RUT rea1*4
➔ NCHRUT integer*4
➔ TRIM integer*4
➔ GAINL rea1*4
➔ GAINC real*4
➔ GAINL real*4

2-D array with left-hand height signal.
2-D array with center (in rut) height signal.
2-D array with right-hand height signal.
number of raw data channels. (HL, HC, HR are channels in
the same 2-D array.)
number of samples (before decimation).
2-D array for output rut depth signal.
number of channels in output array.
decimation ratio.
gain for left-hand height signal.
gain for center height signal.
gain for right-hand height signal.

89.

➔ ZL real*4 height of L. height sensor when it reads zero.
➔ zc real*4 height of C. height sensor when it reads zero.
➔ ZR real*4 height of R. height sensor when it reads zero.
➔ HLLAT real*4 lateral distance between L. and C. sensors.
➔ HRLAT real*4 lateral distance between R. and C. sensors.

SA TMAX (ARRAY, NCH, NS, OFFSET, MAX, COUNT, NSAT, LSAT) chksat.obj

Check a raw data signal for saturation at an upper limit. To do this, find the maximum
value and also look for two or more consecutive samples at that limit.

➔ ARRAY
➔ NCH
➔ NS
➔ OFFSET
HMAX

H COUNT

tt NSAT
H LSAT

integer*2
integer*4
integer*4
integer*4
integer*2

integer*4

integer*4
integer*4

2-D input array. Channel I is checked.
number of channels in ARRAY.
number of samples in ARRAY.
number of samples previously processed.
maximum value in signal. The subroutine will update this
value if a larger amplitude is found.
counter used to see if signal stays at max level for two
adjacent samples.
number of saturations in signal.
location (sample no.) of first saturation.

SATMIN (ARRAY, NCH, NS, OFFSET, MAX, COUNT, NSAT, LSAT) chksat.obj

Check a raw data signal for saturation at a lower limit. To do this, find the maximum
value and also look for two or more consecutive samples at that limit.

➔ ARRAY
➔ NCH
➔ NS
➔ OFFSET
H :MIN

H COUNT

H NSAT
H LSAT

SETSTM

integer*2 2-D input array. Channel 1 is checked.
integer*4 number of channels in ARRAY.
integer*4 number of samples in ARRAY.
integer*4 number of samples previously processed.
integer*2 minimum value in signal. The subroutine will update this

value if a smaller amplitude is found.
integer*4 counter used to see if signal stays at min level for two

. adjacent samples.
integer*4 number of saturations in signal.
integer*4 location (sample no.) of first saturation.

setstmfor

This subroutine calculates coefficients for the state-transition matrix used in the IRI
quarter-car simulation. It requires MINV, a matrix inversion subroutine.

90

$INCLUDE:'SETCOM' the SETUP array includes the sample interval and the arrays
containing the quarter-car coefficients.

Test and Calibration

This subsection describes the subroutines that collect data for calibration and testing
applications.

Quick Reference

ACAL (ICHAN, ROW)--Calibrate an analog data channel.
ADSET (ADCURB, BUFT, BUFST, NBUF, BYTB, MAXB, BUFFCNT, DONE)-Set

up the data collection parameters and the interrupt routine.
CALIB--Calibrate the analog hardware and check the height sensors.
CONFIGURE-Select which data to collect
PULSE-Check the calibration of the distance sender.
PULTST (PASS, DONE, JJ, CONY, MAXP)-Set up the interrupt and data collection

routine for the distance pulser check.
STARTAD (FF, BUFST, BUFT, BUFFCNT, MAXB, ADCURB, DONE,

INDEX)-Start the data collection.
TCHECK (IC, ROW, IPOS)-Check a height transducer.
TEST (IITY)-Collect data.

Subroutine Descriptions

ACAL (ICHAN, ROW) calib.obj

Calibrate one analog channel. In this routine, all readings are actually averages of one
second of data sampled at 300 hertz. First, the current zero data voltage is read and along
with the RMS noise, printed on the screen. The offset DIA on the analog card is then
loaded so that the zero data voltage is within 40 millivolts of zero. The adjusted value and
its associated noise are also printed on the screen. Next, the transducer is disconnected and
a calibration DIA signal is put into the amplifier. A staircase signal is put in and the
amplifier outputs are simultaneously measured. The actual amplifier gains are calculated
from a regression of this data. The gains and resulting full-scale values are the written to
the screen.

➔ !CHAN integer*2 channel number.
➔ ROW integer*2 row on the screen where the calibration results are printed.

INCLUDE:'SETCOM' contains the analog channel names, zero data values, and
gains measured by the calibration.

91

ADSET (ADCURB, BUFf, BUFST, NBUF, BYTB, MAXB, BUFFCNT, DONE)
adnew.obj

This subroutine is written in assembly language. It saves the addresses of the data
acquisition parameters for the interrupt routine (also included in adnew.obj), sets up the
interrupt vector via a DOS call, and enables the interrupt on the 8259 interrupt controller.
Data are collected automatically via OMA and the ND clock sequencer.

~ ADCURB integer*2 current AID buffer being filled.
➔ BUFf integer*4 array containing the buffer addresses.
H BUFST integer*2 array containing the status of the buffers. 0== buffer empty,

-1 == buffer is full.
➔ NB UF · integer*2 number of buffers.
➔ BYTB integer*2 number of bytes per buffer.
➔ MAXB integer*2 maximum number of buffers to fill.
➔ BUFFCNT integer*2 number of buffers filled.
H OONE integer*2 status flag. 0== not done, -l==done, l==error .

CALIB calib.obj

This subroutine calibrates all the channels previously selected by the configure
subroutine. With the calibration bar in the middle or zero data position, it does an electrical
calibration via a call to ACAL. With the calibration bar in the top and bottom positions, it
subsequently calls TCHECK to check the accuracy of the height transducers. It then
updates all of the calibration status variables.

INCLUDE:'SETCOM' contains the analog channel names, zero data values, and
gains measured by the calibration.

INCLUDE:;STATCOM' contains the calibration status variables.

CONFIGURE conjig.obj

Displays the configuration menu to the operator and allows the selection of which data
channels are to be collected (e.g., "left profile" or "left profile and left rut"). The
subroutine reads in the number of channels, AID start and stop channels, buffer offsets,
and other variables used in processing the data from the file CONFIG.SET.

INCLUDE:'SETCOM' the set array contains the configuration information.

PULSE pulse.obj

This subroutine checks the accuracy of the wheel pulser by comparing a.known
distance traveled with the measured distance provided by the pulser. The average velocity
derived from the distance pulser is also compared with the known velocity (known distance

92

traveled divided by the elapsed time). The pulser distance, true distance, measured
velocity, and true velocity are printed on the screen.

data are collected into the array IBUF. INCLUDE:'BUFCOM'
INCLUDE:'IOP ARMS'
INCLUDE:'SETCOM'

i/o parameters are required to enable data collection.
contains the gain for the pulser and the gain and offset for
the velocity channel.

PULTST (PASS, DONE, JJ, CONY, MAXP) pulsetst.obj

This subroutine is written in assembly language. It saves the addresses of the data
acquisition parameters for the interrupt routine (also included in adnew.obj), sets up the
interrupt vector via a DOS call, and.enables the interrupt on the 8259 interrupt controller.
Data are collected both via OMA and by programmed 1/0 without the AID sequencer.

·H PASS
HOONE
➔ PHSAD
➔ CONV
➔ MAXP

integer*4 pass count.
integer*2 flag. 0=not done, - l=done l=error.
integer*4 physical buffer address.
integer*2 number of channels or conversion per pass.
integer*4 m_aximum number of passes.

STARTAD (FF, BUFST, BUFT, BUFFCNT, MAXB, ADCURB, DONE, INDEX)
startad.obj

This subroutine is called by TEST to start the data collection process. First, it
calculates the beginning of the buffers so that there won't be any page overruns. Then, it
stores the buffer addresses in the array BUFf and initializes the status array BUFST. It
resets the AID sequencer and then sets it.up for the current configuration. Finally, it sets
the filter clock, call ADSET to set up the interrupt routine, and then waits for a key to be
pressed. When a key is pressed data collection begins and the subroutine returns.

➔ FF real*4 filter clock frequency.
H BUFST integer*2 array containing the status of the buffers .. 0= buffer empty,

-1 = buffer is full.
H BUFT integer*4 array containing the buffer addresses.
➔ BUFFCNT integer*2 number of buffers filled.
➔ MAXB integer*2 maximum number of buffers to fill.
+-- ADCURB integer*2 current AID buffer being filled.
H OONE integer*2 status flag. 0= not done, -l=done, l=error.
+-- INDEX integer*2 index into the array IBUF where the buffers start.

INCLUDE:'BUFCOM'
INCLUDE:'IOP ARMS'
INCLUDE:'SETCOM'

data are collected into the array IBUF.
1/0 parameters are required to enable data collection.
contains number -of channels and other data collection
parameters.

93

TCHECK (IC, ROW, IPOS) calibfor

This subroutine writes the nominal height of a transducer to the screen and then
measures the actual height, prints it, and compares the two and prints a warning if they
don't agree within two percent.

➔ IC integer*2 transducer channel number.
➔ ROW
➔ IPOS

integer*2 row on the screen where results are printed.
integer*2 position of the bar l=top 2=bottom.

INCLUDE:'SETCOM' contains the gains and offsets of the height transducers.

TEST (IITY) test.obj

This subroutine controls the collection of road data. First the operator can edit the test
display screen. Information such as surlace type, lane, direction traveled, route, test
speed, sample length, etc,. can be changed. The routine checks for an initialized tape and
ensures that the given test will fit on the current drive of the tape. The test begins when the
operator hits any key. Data are collected into fifteen buffers and written to tape a buffer at a
time during data collection. After a buffer is written it can be filled again. The test ends
when: (1) the operator hits a key, (2) the test length has been reached, or (3) there is no
buffer available to write into. The remaining data are then recorded and TEST returns. If it
is a normal test, data collection is triggered by the wheel pulser and. AID sequencer. If it is
a bounce test, data are sampled at a fixed time interval.

➔ IITY integer*2 test type 0=normal test l=bounce test.

INCLUDE:'BUFCOM'
INCLUDE:'HANDLES'

INCLUDE:'IOPARMS'

INCLUDE:'SETCOM'

data are collected into the array IBUF.
contains definition of variables for file creating, positioning
and writing.
1/0 parameters are required to enable and disable data
collection.
contains number of channels and other data collection
parameters.

INCLUDE:'STATCOM' contains tape status variables .

. 94

APPENDIX A: SCHEMATICS

This appendix contains schematic drawings for th.e hardware fabricated at UMTRI.
Some of the cards had been designed prior to the profilometer, and are used for other
applications. In these cases, the drawings may show optional components that were not
required for the configurations appropriate to a profilometer. For example, the schematic
for the analog signal-conditioning card in figure 23 shows several optional trim pots that
were not installed for the profilometer.

95

Table 10. Wiring list for the signal-conditioning unit backplane bus wiring.

. ' Control Pin# I
Cards CO - C15

I Pull up Function I I
Card I I Card • '

A+1 I I +SV I I

8+2
I I

SVGnd I I

C I I

3 I I
SCD I '

LJ I CAL. Hll:iH
4

I . I .

CAL. LOW I

t: ' I
I I

5 I ! '
t- I I

6 I I
I I

H I I
I

7 I

J i
.

8 I
' '

K ·1 .

9
I
I

L ' I
I

10 ! -
M

.
I

11 I
• ,.

N+12 I

-15V I

P+13 : ' COM : !

R+14 I I .

+15V
I i

:::; I D7 I
15 D6
l .

D5
16 :

D4 • u u;;,
17 I

D2 .
V ' LJ1 I
18 DO
w . LJH:::i
19 I

I I

X +Ht:t-
20

I
FILTER CLK

y .
: 21 • .

L
I 22 I '

96

DE9-S Signal when used with en
ChO Analog Signe 1 Conditioning Card

5 -lSV
4 +lSV
9 COM.
8 EXC.
2 -SENSE------~
1 +SENSE
6 ---------SIGNAL---------<
7 +SIGNAL---------<
3 COM.

22/ 44 Edge
Connector co
1 1
M
10-L
9-K
8
J
7
H
13

Note: This is for channel o, channels 1~15 Eire the same.

Figure 22. Schematic of the signal-conditioning unit backplane transducer wiring.

97

Table 11. Wiring list for the signal-conditioning unit backplane control wiring.

From Control to From Control to From D825
Card Pin# Card-Pin# Card Pin# Card-Pin# Connector to

3 C0-C 15 C0-19 A-1 DIP-1
4 C1-C 16 C1-19 A-2 DIP-2
5 C2-C 17 C2-19 A-3 DIP-3
6 C3-C 18 C3-19 A-4 DIP-4
7 C4-C 19 C4-19 A-5 DIP-5
8 C5-C 20 CS-19 · A-6 DIP-6
9 C6-C 21 C6-19 A-7 DIP-7
10 C7-C 22 C7-19 . A-8 DIP-8
C ca-c s CB-19 A-11 C0-3
D C9-C T C9-19 A-12 C0-4
E C10-C u C10-19 A-13 C0-D
F C11-C V C11-19 B-13 co-s
H C12-C w C12-19 B-12 C0-15
J C13-C X C13-19 B-11 C0-T
K C14-C y C14-19 B-10 C0-16
L C15-C z C15-19 B-9 C0-U

B-8 C0-17
B-7 C0-V

D825/A 14-25 to GND B-6 C0-18
D825/B 14-25 to GND 8-5 C0-W
DIP 9-16 to GND B-4 C0-20

8-3 C0-Y
B-2 C0-21

98

tO
tO

00
~
~

~+ISV

ct:
; ... ,
,- COM

• -:f9-I) i-
-/J-t,

,,.,

'5:IJ;NlfL
rou~ct

p11r,r,.

c;.

QI

.,.,.y Fxc.
RD;f',

£]I.<. 1'1'.0f,,,

-1n,_,,, ·"' ,.,_,,.

r.,,..,,
Oll:FS-ET
l"llllM

P1 JJ
"'

.f\ll .:111 ,,
.-·su.. '"-C. ,V•.w rna uu

""'

1'-JNIF

G111"'
1901,

RE't;>11&19Tl1"1.

lfl-1
/OIC

-,rv

RI-& ,.,.
~

~

~
IOI(

Rl-"-
101(

.,...,.._

Rl-:1
tlJK

Figure 23. Schematic of an analog signal-conditioning card.

'

'7

I

FIL Tl'II

""'"c;,

:r,

" - 'l r,,1 I I ~;
6

~-
,=

,u-.1
/DK

,,

,Olrf

CSX

/ Reproduced from-. -----~0
L best ovallable copy. "

Table 12. Headers for the analog signal-conditioning cards.

CH GAIN VO EXCITATION FILTER

0 HGTRGHT 3-14 Short 8-9 Short 1-16 Short None
& 5-12 Short 3-14 Short 2-15 Short

4 HGT LEFT 6-11; 91 K; G=2.03 6-13 Short
& 8-9 Short 7-9&10 Short

SMID RUT 11-12 Short

1 AZ. RGHT 3-14 Short 8-9 Short 1-16 Short None
& 5-12 Short 3-14 Short 2-15 Short

3 AZ. LEFT 6-11; 91 K; G=2.03 2-15 Short 6-13 Short
8-9 Short 1-16 Short 7-9&10 Short

8-3; 2K 1% 11-12 Short

2 VELOCITY 3-14 Short 8-9 Short None None
5-12 Short
6-11; 91 K; G=2.03
7-10 Short

100

.....
0

LM1'805 d\ +6

+1:5 G> • 'IPF"r.l' •• -1:5 0

R12
:510

R11
7:5

SIOIN l

+6 eJ t I 'V\f\J6 9 • I 'V\fu&--1

T•
C7

'.qtf'
12

i

U1

,...,o

CLOCK

LM7905

'Er ~ -
0 -6

l2

R4
10K

p:r • ,, B-6

Figure 24. Schematic of a filter card.

RIO

rW
101(

SIOOUT

Design: FILTER.
Rev: A
Pege: 01
Size: A

I-'
0
NI

AO

A2

-----C0+12

4514

+12

24

+12

so
SI

r------------<> PE3

.----------0 PES

...------0 PE6

S2 □ 'I • 0PE7
S!
S4
SS ~ PE9 S6 r ~

S7
S8
S9 · U PEC

S10 I
S1 I I =~ PED
S12 I•

S13
S14
S15'

'-------0 PEE

'---------~>PEH

'-----------OPEK
...._ ______ 0 PEL

r----------0 PE15
..-------QPE16
.-----------<_> PE17

:?!IAY 1 , 0 PE18

+15
7812

PE14Q t 11

C3
.1p.F

+15

2

7805

+12

C4
2 lµF

PE2

PE19 PEP

:?:Ill OPE2C

;fr I OPE21
PE22

'------0 PES

L------0 PET

-------0 PEU

'---------<> PE'w'

'------0 PEX

L-----------OPEY

Figure 25. Schematic of the analog control card.

Design: ANAL. CNTRL
Rev: A
P6ge: 0 I
Size: A

I-'
0
ti,,

P2

~ PCL
2 -=-

o---J Cl 1 1 01

11,lF
Pl 2

+!!I Kl

PA

P20 R4 Kl

'"'I YN1O
3

~ .1 1 I
3.1K

PJ R'5

C7

pg
.O1pF 12 DI 12 02(2

1N4454

R7
P14

0 I (i) +15

~

9
p

-
C1O

P12 } lµF"

o------G -1s

C'5 .001pF
+'5

R3

75OK

I\J\... • I 'V~;_;;,," • ' D PH

7_

r } r C4 -1'5 2150pF

-!-

U1

LM2917 +I '5

J ~
RS
470 - 2

c,,..L

""'1

P6

R9
2K

Figure 26. Schematic of the velocity-converter card.

'P' r)P11

PM

-4

Design: VEL CONV ...
Rev: A
Page: 01
S1ze: A

P2

QI 02

2 2

PC YN10 P3 D 11r 1 YNIO

+15

~
P1

RI PS

2.4K
PO~ KIB • •

K2B

- I P6

LH336 ·r~ 2()1(

PH ~E
a TOCHAN

~
0 c 3 3

"'"
70NA/O

P4D J.
.1 J PE .,,,.. • 1

NE a
P7D 6/' T NE -

KIA K2A
PF

Design: AID CHECK ..
Rev: A
P11ge: 01
S1ze: A

Figure 27. Schematic of the AID check carci.

2.21(

t .I. • J.

PIS +1S
06 R1

221(r -P14
• I I I

P16 <
04 R2

I Cl

2.21(

P17 C
D2 R3 ..f=

2.2K I +1S

P18 C
DO R4

2.2K

PS

07 RS
2.21(
t A A

PT
~ OS R6 0
u,

2.2K'
PU C

g··· Rl2

2 2.4K

1
YR[f'

P3

It~ R13

0 PX

R11 Z1
2 LM336

t
D3 R7

2.2i<

PY
+S

1>1 R8 Rl4
F'CK

2.21< P20 PA ...
P'v/ 0 330

DAS
R9 Design: PULL UP

Rev: A
Pege: 01
Size: A

Figure 28. Schematic of the pull-up card.

-DATA
I

PA24
PA29

A7 +5
1~-PIO A2

<.4.7K
PA23

A8

~ I rt-K>W I +5 I +5
G) G)

AEN
U1

PA26

A5 D-
I 4 ln;T v.il II I •lr.?i" v.il II 4JJI./ ./ I ~ "'I""-, ~ UIOA "'i----+ PA7 U9A

PA25
-A6

PA22

A9 D-

74LS1~ f~J'·~·~ ~-!- ~~
- -RST · PCO

l,:f.R

I

PAS t DO

I ~
PA9 I D I D-i DI 0 +5

en
PB20 @ PA7 A r'II. ■ 11 ... ■ . D2

I .I u., I. - I D3 PA6
IYIL.

D- l 1Y2 ., ,"Tia~~,.:: .. , •• I D4
1Y3
1Y4 -RST PAS
2Y1 n ,~- -w

~~ 2Y"
3 2Y

4U22v~rL, 1~ PA4 I

~.1\o~

• D6

J4LS244 I CPO ~TCLK
D

t D7
PA3
r""'

Design: IBM INTER

- Rev: A
- +S I Page: 1

Stze: A PA7

Figure 29. Schematic of the calibration IBM interface card (part 1 of 4).

.....
0
..;:i

+5

AO

--+-IOV
! !iijvt< '"' 1(I ~-TN

4 U33 R ~ ·IOR
+5

i AM9513

7
,9
~
10

1
2
3
4
:5

n.nrJ~4- l . I I -,. PC! I + ...1 -· - --

PD6

PD1
2 -

__r:--0

PD4

PD3 0-----. ~
L ~1

: PDJ

PD2. 0 6 6 1

PD8

+5

PD'5

Figure 30. Schematic of the calibration IBM interface card (part 2 of 4).

Design: IBM.INTER
Rev: A
Pege: 2
Size: A

+~

00 T
'1438 U138 PCS

01 I Yoo
PC27 :it "'

220 U20
PC7

PC26 re2 U19
03 I I I I 18180 8~71111 U12f'

~ 0PC6

[5 0PC25
04 I I I I r-,-·--·· I II II I

12
220

£ £ ? I - . - Ill - PC~

05 I I II I I IU I I I I II I PC24
220 U17

Ul2D 7438 PC4 --

z=J ~ PC23 I
U16

I-' . U12C PC3 0 -
00

PC22
;_RST 220 U1'

U12B. PC2

~ PC21
220

U12A ~PC1

- PC20

Design: IBM INTER
Rev: A
Pege: 3
Size: A

Figure 31. ,Schematic of the calibration IBM interface card (part 3 of 4).

+5
U!2E PC17

'- '" -
PC36

220 U29
U32D ~PC16 ... ,.

PC35
220 • U28_.
■ II""'

PC15

PC34 -
220

l.1!28 ~--, .. ~T•L~ 0PC33
220

I IJ26• I .& .& _,,

PC13

----0 PC32
220
I .& I ') '

"' -
PC12

..... :-r -!-
--0PC31

.o k:(7438 --
co 220

. ~3E
PCl 1

11 ,n
PC30

220

~ U23~

~ I Ul:50 LJ.AMZ OPCIO

,f>,e +< 0PC29 ;..,,ua
+5

07 I I f 220 . U22_ ~PC19

PC9

PC28

PCIB r Des1gn: IBM INTER
Rev: A

PC!7 1
Pege: 4'
Size: A

Figure 32. Schematic of the calibration IBM interface card (part 4 of 4).

APPENDIX 8: CABLING INFORMATION

110

DB25-P-B DC37-P
to Analog Function Wire to
Backplane Color IBM Interface

4(- FCLK+ ' ' WHT 18 I I
16 (I I FCLK- GRN 37 ._,
16 (I
5(-' ' DAS+ BLU 16 I I

17 (I I DAS- BLK 35 ·r' 17 (
6(,-, DO+ ORN B I I

1 B (I I DO- RED 27 ' '
18 (T
7(- DI+ GRN ' ' 7 I I

19 (I I 01- BLK 26 ' '
19 (T
8(-' ' D2+ BRN 6 I I

20 (I I 02- RED 25 ' '
20 (J
9(, ... , 03+ VEL 5 I I

21 (I I D3- RED 24 'r' 21 (
10 (,-, D4+ RED 4 I I
22 (I I 04- GRN 23 ' '
22 (T
1 1 (,-, D5+ BLU 3. I I

23 (I I 05- RED 22 ._,
23 (I

12 (, ... , 06+ WHT 2 I I

24 (I I D6- RED 21 ' '
24 (T
13 (,-, D7+ WHT 1 I I

25 (I I D7- BLK 20 ' '
25 (T

Figure 33. Cable diagram of the calibration control wiring (part .1 of 2).

111

DB25-S-A DC37-P
to Anelog Funct 1on Wire to
Beckplene · Color IBM lnterfece

1 (
,-,

AO+ VEL 13 I I

14 (I I AO- GRN 32 ·,· 14 (
2(,-. A I+ BRN 12 I I

15 (I I A 1- GRN 31 I I

15 (J
3(,-. A2+ VEL 1 1 I I

16 (I I A2- BLK 30 ,_,
16 (I

4(- A3+ BLU 0 I 10 I· I
17 (I I A3- GRN 29 I I

17 (T
5(,-. A4+ BRN 9 I I

18 (I I A4- BLK 28
' I

18 (T
6(.-. CS+ ORN 15 I I

19 (I I cs- GRN 34 'i'
19 (
7 (.-, DAE+ ORN 14 I I

20 (I I DAE- BLK 33 ._1
20 (I

1 1 (- RED I ' SCD+ 17 I I

23 (I I SCD- BLK 36 .,_,
23 (

,
DA 15-P

to
IBM Interface

12 CAL LO BLU
,-,) B I I

13 CAL HI WHT I I) 7
'j'

) 6

Figure 34. Cable diagram of the calibration control wiring (part 2 of 2).

112

IBM lnterfece cerd
Dip Heeder DA15-S
Pin• Pin'

1 .-. ' -' I I 1 ---------RED-------....... --<
2 I I I i
--------- BLK-------;,....;.---< 2

3 (J r· (3

4
s
7
B

,-,
I

,-,
I I ---------.RED----------<

I I

.=.
I

I I

'
'
::::

' I
+--r-+------- BLK -------H---<
~-H-------WHT----------'1--+---<

I I

' '
I I

' ,. ---------GRN -------;....;..--<

4
5
7
B

6 (J T (6

g ,-,
I ' -' g

I ~-;...+-------RED-------;....;..--<
I. I I I +----------- BLK ----------< 10
T T (11

Figure 35. Cable diagram of the calibration IBM interface card DIP jumper wiring.

DA15-P so Pin Heeder
DIP Jumper for DIA Wiring 3 Pin Molex to DT280 1 -A

IBM Interface Connector 1/0 Boerd
4(.-. RED ,-, (1(- (22 Ce! HI ' ' I I I I I I

5 (I I BLK Ce! LO I I (2(I I (23 ' ' ·,· ' '
6 (J (3(T

AID Clock Wiring

g (,-, RED AID CLK 50 I I
10 (I I BLK DGND· 48 ' '
1 1 (J

Figure 36. Cable diagram of the AID clock and DI A wiring.

113

DB25-P-B 50 Pin He6der

to An61og Function Wire to

B6ckpl6ne Color DT2801-A I /0 Bo6rd -C0-5 CHO HI ORN I I < 1 i i
CO-E CHO LO GRN I I < 2 ·-· C1-5 CH 1 HI BRN

,-, < 3 I I

C 1-E CH 1 LO GRN I I < 4 '::::::'
C2-5 CH 2 HI VEL I I < 5 I I
C2-E CH 2 LO BLK I I < 6 I I

:I:
C3-5 CH 3 HI VEL I I < 7 I I
C3-E CH 3 LO GRN I I < 8 ':'
C4-5 CH 4HI BRN I I < 9 I I

C4-E CH 4LO BLK I I (10 ':::·
C5-5 CH 5 HI BLU I I (11 I i

I-' CS-E CH 5 LO GRN I I (12 I-' I I ~. :I:
(13 C6-5 CH 6 HI ORN I I

I I
C6-E CH 6 LO· RED I I (114 ':::'

ClS-5 CH 15 HI RED I I (15 I I

C15-E CH 15 LO GRN :r:~
4 Pin Molex DE9-P
Connector to CH 15

CH 7 HI - < 2 -)7 C7-5 BLU I I WHT I I

I I I I
C7-E CH 7 LO BLK I I < 4 (BLK I I)6 ._, I I

T)3

Figure 37. Cable diagram of the ND wiring.

~

Analog Amphenol 57 Series Front Panel
Backplane Color 36 Contacts Color Test Jack

C0-6 I I BLK
...

) 1 >
...

WHT Ch-0 Output I I I I

I I I I · 1 I

Cl-6 I I BRN I I) 2 > I I GRN Ch-1 Output I t I I

"T' C 1-E • T T) 3 > , ... ,
C2-6 I I BLK I I) 4 > RED Ch-2 Output I I I I I
C3-6 I I VEL I I) 5 > I I BLK Ch-3 Output I I I I ·-· C3-E • J T) 6 , ... ,
C4-6 I I BLK I I) 7 > WHT Ch-4 Output I I I I I
C5-6 I I BLU I I) 8 > I I GRN Ch-5 Output I ; I I I

C5-E • J T) 9 > I
C6-6 I I BLK I I) 10) I I RED Ch-6 Output I I - I I I I
C7-6 I I RED I I) 11 > I I BLK Ch-7 Output ·,· I I ,_,
C7-E• T) 12
C7-E • I I, BLK. I I) 13 BLK GND 0-7 I I I I
C8-E I I GRN I I) 31 BLK GND 8-15 I I I I
C8-E • T T)14 C11 , ... ,
C8-6 I I BLK I I) 30) WHT Ch-8 Output I I I I I I

C9-6 I I WHT I I > 29 > I : GRN Ch-9 Output I I I I

C9-E • - T T) 28 >-----I
C 10-6·

... ...
I I BLK I I) 27) j i RED Ch-10 Output I I I I

C 11-6 I I ORN · 1 I) 26) I I BLK Ch-1 1 Output I I I I I i

J T ~

C 11-E •)25 ... , ... , ...
Ch-12 Output C12-6 I I GRN) 24) I I WHT I I I I I I

C13-6 I I RED I I) 23) I I GRN Ch-13 Output I I I I I I

C 13-E • J T ..
) 22) I

C14-6 I I RED I I) 21) I I RED Ch-14 Output I I I I I I

C15-6 I I WHT I I) 20) I I BLK Ch-15 Output I I I I ·~·
C 14-E • T T)19

Figure 38. Cable diagram of the test jack wiring.

Ve 1. Converter card DE9-P
DE9-P Ch8 Ch2

7 WHT
,-, 7 Analog I o

T)3 Velocity

DA15-P
to DIP Jumper for

IBM Interface card
4 • RED ' ' 1 I I

5 BLK I I 2 I 0

T)3

3 Pin Molex Magnetic
Connector . Pickup

1 (' -I - (1(
.,. -

I WHT I • ' • WHT I I I I I I

2 (I I BLK I I (2(I I • BLK ' I I • I '
3 (T T· (3(T

Figure 39. Cable diagram of the velocity wiring.

116

Ch1 AZ RGHT & Ch3 AZ LEFT

Ace el. Function W1re
Pin• Color

4 +15V RED
,-,) I I

3 -1SV GRN I I) I I
8 COM BLK I I) I I

1 SIG. WHT I I)
' I

T)

ChO HGT RGHT & Ch4 HGT LEFT &. Ch5 MID RUT

BNC
Funct 1 on W1 re

Color -Center Cond. ~(-....,: : ---
Outer Cond.) J

--- WHT ------SIG. -0 I
0 I

1
)
)

DE9-P
Pin•
4
s
9
7
3

DE9-P
Pin•
7
9

Figure 40. Cable diagram of the accelerometer and height sensor wiring.

117

APPENDIX C: FORTRAN EXTENSIONS

This appendix describes about 60 subroutines and functions that can be used with
Fortran programs compiled for the IBM PC with the Microsoft compiler. They extend the
standard Fortran language to allow closer interaction with the hardware of the IBM PC.
Table 13 lists all of the routines for quick reference, and the remainder of this appendix
describes the routines in more detail. The descriptions are divided into categories dealing
with DOS file access, integer functions, screen I/0 routines, "user friendly" input, and
miscellaneous routines.

File Routines

This subsection describes the subroutines that allow the Fortran programmer to create,
open, read, and write files directly through DOS function calls. These subroutines make
reading and writing random access binary data files ten times faster than normal Microsoft
Fortran 1/0. This section also describes various Fortran subroutines that provide a user
friendly way to select file(s) and enter data.

Quick Reference

DFREE (DRIVE, CLUSA, CLUST, BYTES, SECTOR) - Get disk free space.
DRVSEL (DR) - Select a drive.
FJNDF (FNAME, !ERROR) - Find first matching file.
FINDN (!ERROR) - Find next matching file.
FNMAKE (DR, NAME, EXT, FNAME, DIR) - Compose or decompose a filename.
FSEL (FNAME, ISEL, FILNA)- Select a file.
FSELALL (FNAME, ISEL, FILNA) - Select several files.
GETDTA (DTAAD)- Get disk transfer address.
GFILE (DR, FNAME, EXT, !EXIST, ROW, COL, IRET) - Get a filename.
HCLOSE (HANDLE, IER) - Close a file.
HCREAT (FNAME, HANDLE, IER)- Create a file.
HOPEN (FNAME, HANDLE, ACCESS, IER) - Open a file.
HPOS (HANDLE, :METHOD, OFFSET, POINTER, IER) - Position a file.
HREAD (HANDLE, ARRAY, BYTES, RBYIBS, IER) - Read from a file.
HWRITE (HANDLE, ARRAY, BYTES, RBYTES, IER) -Write to a file.
SETDA (DT AAD) - Set disk transfer address.

ll8

Table 13. Quick reference for the Fortran extensions library.

Each subprogram is a subroutine, unless it is specifically identified as a function.

ADDNUL (STRING, LEN) - Add a null to the end of string.
BEEP - Send a beep to the speaker.
BLANK (STRING, LEN) - Fill a string with blanks.
CLRLIN (L) - Clear line L.
CLRSCR - Clear the screen;
CONHEX (I, D) -. Convert an integer into a hex string.
DFREE (DRIVE, CLUSA, CLUST, BYTES, SECTOR) - Get disk free space.
DRVSEL (DR) - Select a drive.
FINDF (FNAME, !ERROR) - Find first matching file.
FINDN (!ERROR) - Find next matching file.
FNMAKE (DR, NAME, EXT, FNAME, DIR) - Compose or decompose a filename.
FSEL (FNAME, ISEL, FILNA)- Select a file.
FSELALL (FNAME, ISEL, FILNA) - Select several files.
GCHAR (CHAR, A TT) - Get a character from the screen.
GCUR (ROW, COL) - Get the current cursor position.
GDA TE (YEAR, MONIB, DAY) - Get the date.
GEIDT A (DT AAD) - Get disk transfer address.
GETI (I, ILOW, IHIGH, ROW, COL, L, PFRMT, IRET) - Get an integer.
GETR (A, ALOW, AHIGH, ROW, COL, L, PFRMT, IRET) - Get a real number.
GETSTR (STRING, MAXI..EN, ROW, COL, IR.ET)- Get a string.
GFILE (DR, FNAME, EXT, !EXIST, ROW, COL, IRET)-. Get a filename.
GTIME (HOUR, MIN, SEC) - Get the time.
HCLOSE (HANDLE, IER) - Close a file.
HCREAT (FNAME, HANDLE, IER)- Create a file.
HOPEN (FNAME, HANDLE, ACCESS, IER) - Open a file.
HOWLNG (STRING, NTOTAL, LEN)-How long is the string.
HPOS (HANDLE, MEIBOD, OFFSET, POINTER, IER) - Position a file.
HREAD (HANDLE, ARRAY, BYTES, RBYTES, IER)-Read from a file.
HWRITE (HANDLE, ARRAY, BYTES, RBYTES, IER) - Write to a file.
Function IAND (J, K) - Bit-wise AND.
Function IGKEY () - Get a key press from keyboard.
INERROR (STRING, LEN)-· Beep and write error message.
Function INOT (J) - Bit-wise complement.
Function INPB (J) - Input a byte.
Function INPW (J) - Input a word.
Function IOR (J, K) - Bitwise OR.
IOUTB (I, I) - Output a byte.
IOUTW (I, J) - Output a word.
Function IPEEKB (JI) - Get a byte from memory.
Function IPEEKW (JI) - Get a word from memory.
IPOKEB (I, JI) - Put a byte into memory.
IPOKEW (I, JI) - Put a word into memory.

119

Table 13. Quick reference for the Fortran extensions library (continued).

Function ISHFfL (J, COUNT) - Shift a word left.
Function ISHFTR (J, COUNn - Shift a word right.
IV ARPT (I, JJ) - Get the address of a variable.
Function IXOR (J, K) -· Bit-wise exclusive OR.
KCLEAR - Clear the keyboard input buffer.
LJUST (STRING, LEN) - Left justify a string. . .

•

MENU (MNAME, ~MS, MA VAIL, IDEF, IREn - Select an item via a menu.
PCHAR (CHAR, A TT, COUNn - Put a character on the screen
PHEX (I) - Print an integer in hexadecimal.
PHYSAD (N, JJ)-Calculate the physical address of a variable.
PWAIT (IP, N, M)-Wait for a condition on an input port
RETPRO (IRET, I, J, IMAX, IMAX, PAGE, PAGMAX) - Process a return code.
SCRLDN (NLINES, UROW, UCOL, LROW, LCOL) - Scroll down a window.
SCRLUP (NLINES, UROW, UCOL; LROW, LCOL) - Scroll up a window.
SETCUR (ROW, COL) - Set the cursor position.
SETDA (DT AAD)-. Set disk ,transfer address.
STRI (I, STRING, LEN)- Convert.an integer into a stririg.
STRX (X, STRING, LEN) - Convert a real number into a string.
SUBNUL (STRING, LEN) - Remove a null from a string.
W AITKY -Wait for any keypress.
YESNO (I, ROW, COL, IREn - Get .a yes or no.

120

Subroutine Descriptions

DFREE (DRIVE, CLUSA, CLUST, BYTES, SECTOR) forext.obj

This subroutine gets the amount of free space on a drive. The fraction of the drive that
is available is CLUSA + CLUST. The number of free bytes on the drive is BYTES x

SECTOR x CLUSA.

--+ DRIVE
~ CLUSA
~ CLUST
~ BYTES
~ SECTOR

DRVSEL(DR)

integer*2
integer*2
integer*2
integer*2
integer*2

.drive number (0=default, l=a, 2=b, etc.).
clusters available.
total number of clusters on a drive.
number of bytes per sector.
number of sectors per cluster. ·

drvsel.obj

Use a menu to select a drive (A-G).

+.-+DR char*l

FINDF (FNAME, IERROR)

on entry DR is the default drive (e.g., "C") and on exit it is
the drive selected from the menu.

forext.obj

Find the first file name that matches the one in FNAME and place the name in the disk
transfer area starting at the 31-st byte. This should be preceded by a call to GETDT A to get
and save the current disk transfer address and then a call to SETDTA to set the disk transfer
area to a character* 1 variable.

--+ FNAME char* (*) ASCIIZ filename that begins with the drive specifier and can
contain the wild card characters ? and *.

~ !ERROR integer*2 error return with O=no error and l 8=no matching filename.

FINDN (IERROR) forext.obj

Find the next matching filename after a call to FINDF. The subroutine FINDF is only
called once to get the first filename and then FINDN is called repeatedly until there are no
more matching files.

~ !ERROR integer*2 error return with 0=no error and 18=no more files.

FNMAKE (DR, NAME, EXT, FNAME, DIR) fnmake.obj

If DIR is equal to zero then set FNAME=DR:NAME.EXT removing all embedded
spaces. For example, ifDR="A", NAME="FILE", and EXT="OBJ" then FNAME would
be set to "A:FILE.OBf'. If DIR is equal to one, then take FNAME and decompose it into
its three parts DR, NAME, and EXT. For example, if FNAME="c:myfile.dt" then on
output DR="c", NAME="myfile", and EXT ="dt".

121

H DR
HNAME
HEXT

char"'l
charl'8
charl'3

H FNAME char*16
➔ DIR integer"'2

one letter drive specification.
eight letter file name.
three letter extension.
sixteen letter file specification DR:NAME.EXT.
if zero then compose file name; if one decompose file name.

FS~L (FNAME, ISEL, FILNA) fsel.obj

This subroutine allows a user to select a file for some operation without having to type
it in. The calling program typically calls DRVSEL before FSEL to get the drive of interest
and then creates a file specification that consists of the drive , name, and extension that can
include wild card characters. For example, if the program needs a data file to read and all
data files end with the extension "dta" then the calling program would set
FNAME=="a:*.dta". Up to four screens (twenty rows by four columns of filenames) are
then displayed and the user selects a file via the cursor keys. The filenames are put into
reverse video as they are selected. The right and left arrow keys move across the four
columns and the up and down arrows move up and down the rows. The page-up key is
used to see the next screen of files while the page-down key allows the viewing of the
previous screen. When the file that the user wants is in reverse video, it is selected by
pressing the end key. The selected filename is put into FILNA and ISEL is set to one. If
no files are selected, then ISEL will be set to zero.

➔ FNAME
~ ISEL
➔ FILNA

char*15
in te gel""' 2
any

15 character filename that can include wild-card characters.
the number of files selcted by the user (either O or l).
any array of at least 3328 bytes which is over-written with
up to 256 filenames.

FSELALL (FNAME, ISEL, FILNA) fsela/l.obj

This subroutine allows the user to select up to 80 files at a time. It is typically called
when some form of batch processing is to be done. Before FSELALL is called, the
program should get a file specification from the user and put it into FNAME. For example,
if the user wants to select all files beginning with "my'.' he could enter "my*.*". This
would be passed through FNAME and FSELALL would put the list of all files matching
this specification on the screen. The user is asked to verify that all the files are to be
selected and if a yes is answered then the array FILNA is filled with the names and ISEL
will reflect the number of files selected.

➔ FNAME char*15 15 character filename that can include wild card characters.
H ISEL integer*2 on input the maximum number of files that can be selcted by

the user (<== 80) and on output the actual number of files
selected.

H FILNA char* 16 the character ai:ray that receives the filenames.

122

GETDTA (DTAAD) forext.obj

This subroutine gets the current disk tranfer area address and puts its offset and
segment into the array DT AAD. This routine is used to save this address before any calls
to FINF or FINDN are done to ensure no files will be corrupted.

~ DTAAD integer*2 array that will contain the address of the disk transfer area
where DT AAD (l)=0ffset and DT AAD (2)=segment.

GFILE (DR, FNAME, EXT, IEXIST, ROW, COL, IRET) utils.obj

This subroutine prints the default file name FNAME to the screen at the position
(ROW, COL), allows the user to edit this name (change or enter a new name), checks the
name for illegal characters, and finds out if the file already exists. Note, only the eight
character name part of the file name can be edited.

➔ DR char"'l drive letter, e.g., A.
~ FNAME char"'S on input, this is the default file name. On output, it is the

name typed by the user.
➔ EXT char"'3 file extension.
~ IEXIST logical*2 .TRUE. if file DR:FNAME.EXT already exists; otherwise

.FALSE.
➔ ROW
➔ COL

integer*2 row address where FNAME is to be written.
integer*2 column address where FNAME is to be written.

HCLOSE (HANDLE, IER) forext.obj

Close a file that was opened by HOPEN or created and opened by a call to HCREAT.

➔ HANDLE integer*2 file handle assigned by DOS on HOPEN or HCREA T.
~ IER integer*2 error return 0=no error.

HCREAT (FNAME, HANDLE, IER) forext.obj

. Create a file named FNAME and have DOS refer to it by HANDLE. If the file already
exists, then an error will be returned.

➔ FN AME char"'*
~ HANDLE integer*2
~ IER integer*2

ASCIIZ filename.
file handle assigned to FNAME by DOS.
error return 0=no error.

HOPEN (FNAME, HANDLE, ACCESS, IER) forext.obj

Open a file named FNAME and have DOS refer to it by HANDLE. If the file does not
exist, then an error will be returned.The file can be opened as read only, write only, or as
both read and write.

➔ FNAME char"'* ASCIIZ filename.

123

+- RANDIE integer"'2 file handle assigned to FNAME by DOS.
➔ ACCESS integer"'2 file access code 0=read only, l=write, 2=read and write.
+- IER integer"'2 error return 0=no error.

HPOS (RANDIE, METHOD, OFFSET, POINTER, IER) forext.obj

Position a file pointer referred to by HANDLE at OFFSET number of bytes from either
the beginning of the file, from the current pointer, or from the end of the file. This
subroutine allows random accessing of disk files. For example, if one wanted to skip over
the first 2048 bytes of a file and then read the next 1024, HPOS would be called after
HOPEN with METHOD=;,0 and OFFSET:;,2048. Any subsequent reads or writes would
occur from this pointer onward.

➔ HANDLE integer*2. file handle assigned by DOS on HO PEN or HCWSE.
➔ MEIBOD integer"'2 method of positioning 0=absolute, positioning from the

beginning of the file, l=relative positioning from the current
position, and 2=from the end of the file.

➔ OFFSET integer*4 offset into the file.
+- POINTER integer*4 returned file pointer.
+- IER integer"'2 error return 0=no error.

HREAD (HANDLE, ARRAY, BYTES, RBYTES, IER) forext.obj

Read from a file referred to by HANDLE and put BYTES number of bytes i.nto the
buffer ARRAY.

➔ RANDIE integer*2
+- ARRAY any
➔ BYTES integer"'4
+- RBYTES integer"'4
+- IER integer*2

file handle assigned by DOS on HOPEN or HCLOSE.
array into which the file is to be read.
number of bytes to read (< 65535).
number of bytes actually .read.
error return 0=no error.

HWRITE (HANDLE, ARRAY, BYTES, RBYTES, IER) forext.obj

Write BYTES number of bytes from the buffer ARRAY into the file referred to by
HANDLE.

➔ RANDIE integer*2
➔ ARRAY any
➔ BYTES integer*4
+- RBYTES integer*4
+- IER intger*2

file handle assigned by DOS on HOPEN or HCWSE.
array containing stuff to write.
number of bytes to write (< 65535).
number of bytes actually written.
error return 0=no error.

124

SEIDA (DT AAD) forext.obj

Set the disk transfer area address to the offset contained in DTAAD (1) and to the
segment contained in DT AAD (2). This address is either one gotten previously by a call to
GEIDA or the address of a character variable found via a call to IV ARPT.

➔ DTAAD integer"'2 array that contains the address of the disk transfer area
where DTAAD (l)=offset and DTAAD (2)=segment

Integer Functions.

This subsection describes a set of integer*2 functions that add bif-wise logical functions
to Fortran 77. These functions are different than the normal Fortran logical operators
.OR. , .AND. , and .NOT. in that they perform the logical operation on every bit of the
operand(s). In addition to the logical functions, there are functions similar to the Basic
functions of PEEK and INP which.return word as well as byte values. In the examples
below the # is used to indicate a hexadecimal number. ·

Quick Reference

!AND (J, K)-Bit-wise AND.
IGKEY () - Get a key press from keyboard.
INOT (J) - Bit-wise complement
INPB (J) - Input a byte.
INPW (J) - Input a word.
IOR (J, K) - Bitwise OR.
IPEEKB (JJ) - Get a byte from memory.
IPEEKW (JJ) - Get a word from memory.
ISHFTL (J, COUNT) - Shift a word left
ISHFTR (J, COUNT) - Shift a word right.
IXOR (J, K) - Bit-wise exclusive OR.

Subroutine Descriptions

IAND (J, K) forext.obj

Return the bit-wise AND of the two arguments. For example, IAND (#AAAA,
#5555) = 0 and IAND (#FFOO , #AAAA) = #AAOO.

➔ J

➔ K

IGKEY()

integer"'2 first argument
integer"'2 second argument.

forext.obj

Get a keypress from the keyboard. If there was no key pressed since the last call to
KCLEAR then this function returns a zero. If there is a character in the keyboard buffer,
then a call to IGKEY will return it. If the value returned is greater than zero, then the key

125

that was pressed corresponds to a normal ASCII character (between O and 128). If the
value is less than zero, then the key that was pressed corresponds to ah extended key and
the absolute value of the returned number will indicate which key was pressed (e.g., if
IGKEY 0=-72, then the key was the extended key 72 or an up arrow). This function is
used in all of the user-friendly input routines to overcome the limitations of Fortran input

INOT (J) forext.obj

Return the one's complement of the argument. For example, INOT (#AAAA) =
#5555.

➔ J integer*2 number to complement

IOR (J, K) forext.obj

Return the bit-wise OR of the two arguments. For example, IOR (#AAAA ,
#5555)=#FFFF.

➔ J

➔ K

INPB (J)

integer*2 first argument
integer*2 second argument.

Get a byte from the I/0 port addressed by J.

➔ J integer*2 port address.

INPW (J)

Get a word from the 1/0 port addressed by J.

➔ J integer*2 port address.

IPEEKB (JJ)

Get the byte in memory addressed by the array JJ.

forext.obj

forext.obj

forext.obj

➔ JJ integer*2 memory address where JJ (l)= offset and JJ (2)=segment.

IPEEKW (Ji) forext.obj

Get the word in memory addressed by the array JJ.

➔ JJ integer*2 memory address where JJ (l)= offset and JJ (2)=segment.

· 126

ISHFTL (J, COUNT) forext.obj

S)lift the number in J, COUNT bits to the left. Fill the bits shifted in with zero. For
example, ISHFTL (#FFFF , 8) = #FFOO and ISHFTI.. (#6789 , 4) = #7890.

➔ J integer"'2 number to be shifted.
➔ COUNT integer"'2 number of bit positions to shift.

ISHFTR (J, COUNT) forext.obj

Shift the number in J, COUNT bits to the right. Fill the bits shifted in with zero. For
example, ISHFTR (#FFFF ,. 8) = #OOFF and ISHFTR (#6789, 4) = #0678.

➔ J integer"'2 number to be shifted.
➔ COUNT integer"'2 number of bit positions to shift.

IXOR (J, K) forext:obj

Return the bit-wise exclusive OR of the two arguments. For example, IXOR (#AAAA
, #5555) = #FFFF and IXOR (#AAAA , #FFFF) = #5555.

➔ J integer"'2 first argument
➔ K integer*2 second argument.

Screen 1/0 Routines

The following section describes the subroutines that allow the Fortran program to
interface directly with the BIOS screen routines. The user-friendly input routines employ
these routines to circumvent the teletype kind of I/0 nonnally associated with Fortran.

Quick Reference

BEEP - Send a beep to the speaker.
CLRLIN (L) - Clear line L.
CLRSCR - Clear the screen
GCHAR (CHAR, A TT) - Get a character from the screen.
GCUR (ROW, COL) - Get the current cursor position.
KCLEAR - Clear the keyboard input buffer.
PCHAR (CHAR, ATT, COUNT) - Put a character on the screen.
SCRLDN (NLINES, UROW, UCOL, LROW, LCOL) - Scroll down a window.
SCRLUP (NLINES, UROW, UCOL, LROW, LCOL)-Scroll up a window.
SETCUR (ROW, COL) - Set the cursor position.

•

127

Subroutine Descriptions

BEEP utils.obj

Send a beep to the speaker (same as a bell on a teletype, i.e., control G). The beep
normally tells the user that he has done something inappropriate.

CLRLIN (L) utils.obj

Clear the line L on the screen.

➔ L integer*2 line of the screen to clear O S: L S: 24 (line O is at the top of
the screen).

CLRSCR utils.obj

Clear the entire screen.

GCHAR(CHAR,ATT) forext_.obj

Get a character and its attribute from the current cursor location.

char"' 1 character received from the screen +- CHAR
+- ATT integer*2 attribute of the character where 7=normal · video,

l 12=reverse video, =blinking, =intensified.

GCUR (ROW, COL) forext.obj

Get the current cursor position (the position (0, 0) is at the top left comer of the
· screen).

+- ROW
+- COL

KCLEAR

integer*2 row address of the cursor where O s; ROW s; 24.
integer*2 column address of the cursor where Os; COL s; 79.

utils.obj

Clear the keyboard buffer. This subroutine should be called before a reference to
IGKEY if any keys already in the buffer are to be ignored.

PCHAR (CHAR, ATT, COUNT) forext.obj

Put a character with the attributeATT to the screen at the current cursor position. If
COUNT is greater than one, then copy the character COUNT times. For example, to put a·
line of hyphens across the screen CALL PCHAR ("-", 7, 80).

128

➔ CHAR
➔ ATT

char*l
integer"'2

character to put to the screen.
video,

➔ COUNT integer*2

attribute of the character where ?=normal
112=reverse video, =blinking, =intensified.
number of times to repeat character.

SCRLDN (NI.INES, UROW, UCOL, LROW, LCOL) forext.obj

Scroll the window whose upper left corner is (UROW, UCOL) and whose lower right
corner is (LROW, LCOL) NLINES lines down.

➔ NLINES
➔ UROW
➔ UCOL
➔ LROW
➔ LCOL

integer"'2 number of lines to scroll.
integer"'2 row coordinate of the upper left corner of the window.
integer"'2 column coordinate of the upper left corner of the window.
integer*2 row coordinate of the lower right comer of the window.
integer*2 column coordinate of the lower right corner of the window.

SCRLUP (NLINES, UROW, UCOL, LROW, LCOL) forext.obj

Scroll the window whose upper left comer is (UROW, UCOL) and whose lower right
comer is (LROW, LCOL) NLINES lines up.

➔ NLINES integer"'2 number of lines to scroll.
➔ UROW integer"'2 row coordinate of the upper left corner of the window.
➔ UCOL integer*2 column coordinate of the upper left comer of the window.
➔ LROW integer"'2 row coordinate of the lower right comer of the window.
➔ LCOL integer*2 column coordinate of the lower right corner of the window.

SETCUR (ROW, COL) forext.obj

Set the cursor to the position indicated (the position (0, 0) is at the top left corner of
the screen). For Fortran output to be correctly placed on the screen, the format character
"\" should be used as the last character in the format string. For example,

WRITE (*,
➔ ROW

➔ COL

' · (I 4 \) ·') I

integer*2 row address to place the cursor where O ~ ROW ~ 24.
integer"'2 column address to place the cursor where O ~COL:::; 79.

User-Friendly Input

The following routines were written to give a user of a Fortran program a consistent
and friendly way to input numbers and strings and to select one from many options via a
menu.

The routines GETI, GETR, GETSTR, and YESNO all operate in a similar manner.
First a default value is printed and the fieldis highlighted in reverse video. Thus, the user
immediately knows what kind ofinput is expected and how many characters he can type in.

129

The field can be edited by using the left and right arrows to move the cursor to any
character in the field and then overtyping. When the user is happy with the entry, any one
of eight terminating keys is pressed. These keys are Return, up arrow, down arrow, page
up, page down, control left arrow, control right arrow, and End. In the simple case of a
single input, these keys all result in the same action. For page editing, however, they allow -
the user to edit many fields displayed on the screen by moving up, down, to the next or
previous page, left, and right. The End key always terminates an input session. The
default value can be accepted immediately by hitting any of the terminating keys. If the
user input is not within a specified range or if illegal characters are entered, these routines
will notify the user and replace what was typed in by the default value. Thus Fortran
runtime input errors can be eliminated.

Quick Reference

GETI (I, ILOW, !HIGH, ROW, COL, L, PFRMT, IRET)-Get an integer.
GETR (A, ALOW, AHIGH, ROW, COL, L, PFRMT, IRET) - Get a real number.
GETSTR (STRING, MAXLEN, ROW, COL, IRET) - Get a string.
INERROR (STRING, LEN) - Beep and write error message.
MENU (MNAME, MITEMS, MA VAIL, IDEF, IRET) -· Select an item via a menu.
YESNO (I, ROW, COL, IRET)- Get a yes or no.
W AITKY - Wait for any keypress.

Subroutine Descriptions

GETI (I, ILOW, ImGH, ROW, COL, L, PFRMT, IRET) uti/3.obj

Print the default integer to the screen at (ROW, COL) and allow editing of the field of
width L. Accept only integers that are greater or equal to ILOW and less than or equal to
!HIGH.

HI integer*2

➔ ILOW integer*2
➔ Il-lIGH integer*2
➔ ROW integer*2
➔ COL integer*2
➔ L integer *2
➔ PFRMT char
f- IRET integer*2

the default integer on input and the number supplied by the
user on output.
the lower limit for I.
the upper limit for I.
row address of the start of the edit field (0 S ROWS 24).
column address of the start of the edit field (0 s COLS 79).
width of the field.
format to print the number (width = L) e.g. ' (14\)'.
Terminating output code where 0=carriage return, l=up
arrow, 2=down arrow, 3=page up, 4=page down, 5=ctrl left
arrow, 6= ctrl right arrow, and 9=end.

130

GElR (A, ALOW, AHIGH, ROW, COL, L, PFRMT, IRET) uti/3.obj

Print the default real number to the screen at (ROW, COL) and allow editing of the
field of width L. Accept only numbers that are greater or equal to ALOW and less than or
equal to AHIGH.

HA

➔ ALOW
➔ AHIGH
➔ ROW
➔ COL
➔ L

➔ PFRMT
~ IRET

real*4

real*4
real *4
integer*2
integer*2
integer *2
char
integer*2

the default number on input and the number supplied by the
user on output.
the lower limit for A.
the upper limit for A.
row address of the start of the edit field (0 S ROWS 24).
column address of the start of the edit field (0 S COL~ 79).
width of the field.
format to print the number (width= L) e.g. '(F8.2\)'.
Terminating output code where 0=carriage return, 1 =up
arrow, 2=down arrow, 3=page up, 4=page down, 5=ctrl left
arrow, 6= ctrl right arrow, and 9=end. ·

GETSlR (STRING, MAXLEN, ROW, COL, IRET) getstrng.obj

Highlight the string of length MAXI.EN in reverse video and allow editing of the field.
Note this routine does not write the default to the screen. It assumes that it has been
already written.

~ STRING char ·
➔ MAXLEN integer*2
➔ ROW integer*2
➔ COL integer*2
~ IRET integer*2

INERROR (STRING, LEN)

the output string.
length of the edit field.
row address of the start of the edit field (0 ~ROWS 24).
column address of the start of the edit field (0 ~ COL S 79).
Terminating output code where 0=carriage return, l=up
arrow, 2=down arrow, 3=page up, 4=page down, 5=ctrl left
arrow, 6= ctrl right arrow, and 9=end.

utils.obj

Beep to indicate to the user that an error has occurred and display an error message on
line 24.

➔ STRING char string to be written.
➔ LEN integer*2 length of the string.

MENU (MNAME, MITEMS, MA VAIL, IDEF, IRET) utils.obj

This subroutine displays an underlined title followed by a vertical list of possible
choices. An option can be selected when it is displayed in reverse video (those that do not
change into reverse video cannot be selected). The user moves up and down the menu
with the up and down arrow keys and selects the highlighted choice by hitting the end key.
The array MA VAIL determines which menu items can be selected.

131

➔ l½NAME
➔ MITEMS
➔ MAVAil..

char"'32
integer"'2
integer"'2

array that contains the menu title and all the selections.
number of items in the array l½NAME including the title.
array that determines which items can be selected. A zero
disables the item while a one enables it

➔ IDEF
~ IRET

integer"'2
integer"'2

the default item number.
The item selected.

YESNO (I, ROW, COL, IRET) utils.obj

Print the default value (Y or N) to the screen at (ROW, COL) and accept only a "Y"
or an "N" as input

H l 1

➔ ROW
➔ COL
~ IRET

integer"'2 the default on input and the answer on output. 0=yes l=no.
integer*2 row address of the start of the edit field (0 :s;; ROW :s;; 24).
integer"'2 column address of the start of the edit field (0 :s;; COLS 79).
integer*2 Terminating output code where 0=carriage return, l=up

arrow, 2=down arrow, 3=page up, 4=page down, 5=ctrl left
arrow, 6= ctrl right arrow, and 9=end.

WAITKY utill.obj

This subroutine prints the message "Hit any key to continue" on line 24 and waits for
the user to hit a key whereupon the message is deleted from the screen and control returns
to the calling program.

Miscellaneous Routines •

This section describes the remaining subroutines. These provide some string
manipulation routines (BLANK, CONHEX, STRI, STRX, etc), Fortran equivalents of
some Basic routines (POKE, WAIT, V ARPT, etc.), DOS date and time interfaces, and
other utilities needed when the file routines are used (ADDNUL and SUBNUL).

Quick Reference

ADDNUL (STRING, LEN) - Add a null to the end of string.
BLANK (STRING, LEN) - Fill a string with blanks.
CONHEX (I, D) - Convert an integer into a hex string.
ODA TE (YEAR, MONTH, DAY) - Get the date.
GTIME (HOUR, MIN, SEC) - Get the time.
HOWLNG (STRING, NTOTAL, LEN) - How long is the string.
IOUTB (I, J) - Output a byte.
IOUTW (I, J) - Output a word.
IPOKEB (I, JJ) - Put a byte into memory.
IPOKEW (I, JJ) - Put a word into memory.
IV ARPT (I, JJ) - Get the address of a variable.

132

LJUST (STRING, LEN) - Left justify a string.
PHEX (I) -. Print an integer in hexadecimal.
PHYSAD (N, JJ)- Calculate the physical address of a variable
PWAIT (IP, N, M) -Wait for a condition on an input port
RETPRO (IRET, I, J, IMAX, JMAX, PAGE, PAGMAX) - Process a return code.
STRI (I, STRING, LEN) - Convert an integer into a string.
STRX (X, STRING, LEN) - Convert a real number into a string.
SUBNUL (STRING, LEN) - Remove a null from a string.

Subroutine Descriptions

ADDNUL (STRING, LEN) fsel.obj

Find the first blank in the string STRING and substitute a null. This subroutine
converts a normal Fortran string into an ASCIIZ string.

H STRING char string in which the null is placed.
➔ LEN integer*2 maximum length of the string.

BLANK(STRING,LEN)

Fill Uie string STRING with LEN number of blanks.

f- STRING char string into which blanks are inserted.
➔ LEN integer*2 number of blanks to insert.

CONHEX (I, D)

Convert the integer I into a four character hexadecimal string. . .

-+ I integer*2 integer to convert
f- D char"'4 · · string to hold hexadecimal conversion.

GDATE (YEAR, MONTH, DAY)

Get the date.

f- YEAR
f- MONTH
f- DAY

integer*2 current year (e.g. 1986).
integer*2 month (1-12).
integer*2 day (1-31).

GTIME (HOUR, MIN, SEC)

Get the time.

f- HOUR
f- MIN
f- SEC

integer*2 hour (0-23).
integer*2 minute (0-59).
integer*2 seconds (0-59).

133

uti/1.obj

uti/2.obj

forext.obj

· forext.obj

HOWLNG (STRING, NTOTAL, LEN)

Determine how many non-blank characters are at the beginning of the string.

➔ STRING
➔ NTOTAL
~ LEN

IOUTB (I, J)

char
integer*2
integer*2

input string.
maximum length of the string.
actual length of the satring.

Send a byte to an 1/0 port.

➔ I

➔ J

IOUTW (I, J)

integer*2 byte to output.
integer*2 port address.

Send a word to an L'O port.

➔ I integer*2 word to output
➔ J integer*2 port address.

IPOKEB (I, JJ)

Poke a byte into memory (similar to the Basic POKE).

integer*2 byte to put into memory.

utils.obj

forext.obj

forext.obj

forext.obj

➔ I

➔ J integer*2 memory address where JJ (l)=offset and JJ (2)=segment.

IPOKEW (I, JJ) forext.obj

Poke a word into memory .

➔ I integer*2 word to put into memory.
➔ J integer*2 memory address where JJ (l)=offset and JJ (2)=segment.

IV ARPT (I, JJ) forext.obj

Get the address (segment and offset) of a variable.

➔ I any variable.
~ JJ integer*2 memory address where JJ (l)=offset and JJ (2)=segment.

134.

uti/2.obj LJUST(S1RING,LEN)

Left justify the string.

H STRING char on input string to left justify and on output the justified
string.

➔ LEN integer"'2 maximum length of the string.

PHEX (I) utils.obj

Print the integer. in hexadecimal format

➔ I integer*2 integer to print in hex.

PHYSAD (N, JJ) utils.obj

Calculate the physical address of the variable N. This routine is used to supply the
values to set the OMA page register a:nd address register.

➔ N

f- JJ
any variable.
integer*4 the physical address of N (i.e. 00000 to FFFFF).

PWAIT (IP, N, M) utils.obj

Wait until the byte read from port IP exclusive OR'ed with Mand AND'ed with N is
non zero (same as Basic WAIT).

➔ IP
➔ N

➔ M

integer*2 port address.
integer*2 AND mask.
integer*2 exclusive OR mask.

RETPRO (IRET, I, J, IMAX, JMAX, PAGE, PAGMAX) retpro.obj

Take the return from an user-friendly input routine and update the row, column, and
page pointers. This subroutine facilitates page editing.

IRET =0 carnage return move right or to next line if l=IMAX l=I + 1
IRET = 1 up arrow move up one line or to bottom if J = 1 J =J + 1
IRET =2 down arrow move down one line or to top if J =JMAX J =J-1
IRET =3 page up increment page PAGE=P AGE+ 1
IRET =4 page down decrement page PAGE=PAGE-1
IRET =5 cntrl left arrow move left ot to previous line if I= 1 l=l-1
IRET =6 cntrl right arrow move right or to next line if l=IMAX l=I + 1

➔ IRET
HI
HJ
➔ IMAX

integer*2 return from user friendly input routine.
integer*2 column field pointer.
integer*2 row field pointer.
integer*2 maximum number of column edit fields.

135

➔ JMAX integer"'2 maximum number of row edit fields.
H PAGE integer"'2 current page.
➔ PAGMAX integer"'2 maximum number of pages.

STRI (I, S1RING, LEN) uti/3.obj

Convert the integer into a string stripping away leading blanks and return its length.

➔ I integer"'4 number to be converted.
t--- STRING char string representation ofl.
H LEN · integer"'2 number of characters in string. As input, this is the

maximum length of STRING. As output, it is the number of
characters in STRING.

STRX(X,STRING,LEN) uti/3.obj

Convert the real number into a string stripping away leading blanks, trailing zeros and
decimal point and return its length.

➔ I real *4 number to be converted.
t--- STRING char string representation of X.
H LEN integer"'2 number of characters in string. As input, this is the

maximum length of STRING. As output, it is the number of
characters in STRING. ·

SUBNUL (STRING, LEN) fsel.obj

Find the first null in the string and change it to a space. This routine converts an
ASCIIZ string into a normal Fortran string.

H STRING char string in which the null is to be replaced by a space.
➔ LEN integer"'2 maximum length of the string.

136

APPENDIX D: PROGRAM SOURCE LISTINGS

This appendix contains the source listings for the profilometer software. The source
code is contained in files with the MS DOS extension .FOR for Fortran code, and .ASM
for assembler code. Table 14 lists all of the profilometer subroutines in alphabetical order
and indicates the name of the text file containing the source code for that routine.' The
remainder of this appendix consists of the listings of these files, arranged in alphabetical
order by file name.

137

Routine

ACAL
ADCHECK
ADSET

A200NE
AVEVEL
BATCH
CAIDA
CALIB
CALREL
CHKSAT
CONFIG
DEBIAS
DTCLEAR
D1CLOCK
FILCLK
GETELV
GE1LEN
GOAHED
GRCURS
HIPASS
IAVE
INmo
INITP

IOEX

LABEL
WADT
LOGO
LOPASS
LRSLOP
MAIN
.MEASURE
MINV
PWT
PLTELV
PL1RAW
PLTRUT

Table 14. Directory of source files for the profilometer software.

File

calib.for
adcheck.for
adnew.asm

iosubs.for
sigsubs.for
batch.for
iosubs.for
calib.for
iosubs.for
chksat.for
config.for
sigsubs.for
iosubs.for
iosubs.for
iosubs.for
getelv.for
getlen.for
process.for
plotsubs.for
sigsubs.for
sigsubs.for
iosubs.for
initp.for

ioex.for

plotsubs.for
load tape.for
logo.for
lopass.for
sigsubs.for
prof main.for
measure.for
minv.for
plot.for
plotelv.for
plotraw.for
plotrut.for

Description

Calibrate an analog data channel.
Check the calibration of th AID and D/ A converters.
Set up the data collection parameters and the interrupt
routine.
Collect AID on channel ICH.
Average and decimate a (speed) signal.
Process a list of data files.
Set calibration DI A.
Calibrate the analog hardware and check the height sensors.
Switch calibration relay. ·
Check the raw transducer signals for saturation.
Select which data to collect.
Cubtract bias from signal in rea1*4 array.
Clear the Data Translation board.
Set the AID clock on the Data Translation board.
Set the filter clock
Get elevation profiles from tape.
Prompt the user for some type of length measure or range.
Warn the user that some processing needs to be done.
Wait for the user to hit a key, then update plot parameters.
Filter a signal with a hi-pass filter.
Average value of signal in integer*2 array.
Initialize 1/0.
Initialize status variables and check the AID board and the
floating point processor.
Present a menu of options to exercise the input/output
hardware.
Convert a real number into a string for Halo.
Load and initialize tape
Draw the logo for the profilometer.
Smooth a signal.
Calculate slope of signal using a linear regression.
Show the Logo and offer the main menu to the user.
Generate the menu for measuring data.
Matrix inversion.
Plot data using Halo subroutines.
Set up plots of profile elevation.
Set up plots of raw signals.
Set up plots of rut-depth and roughness signals.

138

Table 14. Directory of source files for the profilometer software (continued).

Routine

PLTSEL

PRFCMP

PRFELV
PRFIRI

PROCESS

PRTLF
PRTNUM
PULSE
PULTS!'

PUTYN
RAVE
RDSET
RDTAPD
RDTAPE
RESTOR
RUTCMP
SAlMAX
SATMIN
SCLDWN
SCLUP
SETAD
SETDMA
SETSTM
SETUPS
STARTAD
TCHECK
TEST
TIKSET
TSTDIS
1WAIT
UNLDTP
UPDSET
WRTAPE
WRTSCR
WRTSET

File

plotsel.for

prfcmp.for

sigsubs.for
prfi.ri. for

process.for

prtnum.for
prtnum.for
pulse.for
pulsetst.asm

prtnum.for
sigsubs.for
rdwrtape.for
rdtapd.for
rdwrtape.for
iosubs.foi-
rutcmp.for
chksat.for
chksat.for

. plotsubs.for
plotsubs.for
iosubs.for
iosubs.for
setstm.for
setup.for
startad.for
calib.for
test.for
plotsubs.for
tstdis.for

unloadtp.for
rdwrtape.for
rdwrtape.for
wrtscr.for
rdwrtape.for

Description

Prompt user for the selection of channels and plotting
ranges.
Convert raw data into slope profile, rut depth, IRI
roughness, and elevation profile.
Compute compressed elevation profile from slope. ,
Filter a slope profile signal using the IRI quarter-car
simulation. ··
Generate the menu for viewing data and call the appropriate
subroutines.
Add carriage returns after each line.
Print numerics averaged over a specified interval.
Check the calibration of the distance sensor.
Set up the interrupt and data collection routine for the
distance pulser check.
Put Y or N in specified screen location.
Average value of signal in real*4 array.
Read in SETUP array from a text file.
Read numerical data from processed file.
Read binary data.
Restore analog signal conditioning unit.
Compute, average, and decimate a rut-depth signal.
Check raw data signal for saturation at upper limit.
Check raw data signal for saturation at lower limit.
Scale a variable down.
Scale a variable up.
Set up the AID parameters on the Data Translation board.
Set up the DMA controller.
Calculate coefficients for quarter-car simulation.
Edit the transducer information.
Start the data collection.
Check a height transducer.
Collect data.
Determine first and last tick marks in a given range.
Display summary of test parameters.
Wait for a time interval.
Unload the tape.
Update the SETUP array that begins the current data file.
Write binary data.
Read names and coordinates from file, create screen display.
Write the SETUP array to a text file.

ll9

Table 14. Directory of source files for the profilometer software (continued).

Routine

YESNOL
ZOFF

File

prtnum.for
iosubs.for

Description

Get Yes/No answer and set logical variable.
Set the offset on an analog card.

140

adcheck.for

$TITLE: 1 A/D CALIBRATION CHECK'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE ADCHZCK

$INCLUDE:'IOPARMS'
REAL NSEZER,NSEREF
CALL CLRSCR
CALL SETCUR(l,0)
WRITE(*,9030)

9030 FORMAT('THIS IS A CHECK OF THE A/D AND D/A CALIBRATION'\)

C DISABLED/A I.E. SET CALHI=CALLO
CALL IOUTB(DADIS,CNTRL)

C TURN OFF CAL RELAY AND SHUNT CAL RELAY
CALL CALREL(15,0)
CALL IOUTB(SHOFF,CNTRL)
CALL TWAIT (. 4)

C GET A SECOND OF DATA
CALL A2DONE(7,1,100.,100,AVZERO,NSEZER)
CALL SETCUR(3,0)
WRITE(*,9000)AVZERO,NSEZER

9000 FORMAT('A/D ZERO= ',F7.4,'VOLTS NOISE= ',F7.4,' VRMS'\)

C NOW CHECK REFERENCE VOLTAGE

C SELECT REFERENCE VOLTAGE=2.5
CALL IOUTB(SHON,CNTRL)
CALL TWAIT (. 4)
CALL A2DONE(7,1,100,,100,AVREF,NSEREF)
CALL SETCUR(4,0) ' •
WRITE(*,9010)AVREF,NSEREF

9010 FORMAT('A/D REFERENCE - ',F7.4,'VOLTS NOISE= ',F7.4,' VRMS'\)

C CORRECT REFERENCE FOR ZERO SHIFT
VREF=AVREF-AVZERO
CALL SETCUR(5,0)
WRITE(*,9020)VREF

9020 FORMAT('CORRECTED REFERENCE VOLTAGE= ',F7.4\)

C PRINT OUT PASS OR WARNING MESSAGE
IF(ABS(VREF-2.5) .GT. 0.015)THEN
CALL SETCUR(7,0)
WRITE(*, 1 (A\)') '***WARNING*** A/D SHOULD BE CALIBRATED'
ELSE
CALL SETCUR(7,0)
WRITE(*, 1 (A\)') 'A/D CALIBRATION IS OK'
ENDIF

C CHECK D/A CALIBRATION
C TURN OFF REFERENCE AND TURN ON D/A

141

CALL SETCUR(9,0)
WRITE(*,' (A\)') 'CHECKING D/A GAIN CALIBRATION'
CALL CALREL(l5,1)
CALL TWAIT (. 4)
V=2.5
CALL CALDA (V)
CALL A2DONE(7,1,100,,100,AVZERO,NSEZER)
Vl=-V
CALL CALDA (Vl)
CALL SETCUR(l0,O)
WRITE(*,9040)AVZERO,V

9040 FORMAT('MEASURED ',F7.4,' SHOULD BE= ',F7.4\)
CALL TWAIT(. 4)
CALL A2DONE (7, 1,100., l00,AVREF1NSEREF)
CALL SETCUR(ll,0)
WRITE(*,9040)AVREF,Vl
VREF=AVZERO-AVREF
IF(ABS(VREF-5.) .GT .. 03)THEN
CALL SETCUR(13,0)
WRITE(*,' (A\,)') '***WARNING*** D/A SHOULD BE CALIBRATED'
ELSE
CALL SETCUR(13,0)
WRITE(*,' (A\)') 'D/A GAIN CALIBRATION IS OK'
ENDIF
CALL WAITKY
RETURN
END

142

ADNEW.ASM

DATA
BUFT
BUFST
NUMB
BYTB
MAXB

TITLE A/D ROUTINES
PAGE ,132
SEGMENT PUBLIC 'DATA'
DD '?
DD '?
DW '?

ow '?
DW '?

;BUFFER TABLE BASE ADDRESS
;BUFFER STATUS TABLE BASE ADDRESS
;NUMBER OF BUFFERS

;BYTES PER BUFFER
; MAX# OF BUFFERS TO FILL

BUFCNT DD '? ;BUFFER FILLED COUNT ADDRESS
;DONE FLAG ADDRESS DONEA DD '?

TEMP DW '? ;TEMPORARY FOR ISR
CURB DD '? ;CURRENT BUFFER# ADDRESS
DATA ENDS
DGROUP GROUP DATA
CODE SEGMENT 'CODE'

ASSUME CS:CODE,DS:DGROUP,SS:DGROUP;
DSSAVE DW '?

ADSET(CURB,BUFT,BUFST,NUMB,BYTB,MAXB,BUFCNT,DONE)
CURB=A/D CURRENT BUFFER
BUFT=INTEGER*4 BUFFER ADDRESS TABLE BUFT(NUMB)
BUFST=INTEGER*2 BUFFER STATUS TABLE BUFST(NUMB)
NUMB=INTEGER*2 NUMBER OF BUFFERS
BYTB=INTEGER*2 NUMBER OF BYTES PER BUFFER
MAXB~INTEGER*2 MAXIMUM NUMBER OF BUFFERS TO FILL
BUFCNT=INTEGER*2 NUMBER OF BUFFERS FILLED
DONE=INT*2 DONE FLAG -l=DONE >1 =ERROR 0=NOT DONE

PUBLIC ADS ET
ADSET PROC FAR

PUSH
MOV
MOV
LES
MOV
MOV
LES
MOV
MOV
LES
MOV
MOV
LES
MOV
MOV
LES
MOV
MOV
LES
MOV
MOV
LES
MOV
MOV
LES

BP ;SAVE BP
BP,SP
DSSAVE,DS ;SAVE
BX,DWORD PTR [BP+6]
WORD PTR DONEA,BX ;SAVE
WORD PTR DONEA+2,ES
BX,DWORD PTR [BP+l0]
WORD PTR BUFCNT,BX
WORD PTR BUFCNT+2,ES
BX,DWORD PTR [BP+14]
AX,ES: [BX] ;GET
MAXB,AX
BX,DWORD PTR [BP+lB]
AX,ES: [BX] ;GET
BYTB,AX
BX,DWORD PTR [BP+22]
AX, ES: [BX) ; GET
NUMB,AX
BX,DWORD PTR [BP+26]
WORD PTR BUFST,BX ;SAVE
WORD PTR BUFST+2,ES
BX,DWORD PTR [BP+30]
WORD PTR BUFT,BX ;SAVE
WORD PTR BUFT+2,ES
BX,DWORD PTR [BP+34]

DS FOR INT
;GET DONE ADDRESS
OFFSET
;SAVE SEGMENT
;GET BUFFER COUNT ADDRESS
;SAVE OFFSET
;SAVE SEGMENT
;GET MAX# OF BUFS TO FILL ADDR

MAXB
;SAVE IT
;GET BYTES PER BUFFER ADDR

BYTB
;SAVE IT
;GET NUM # OF BUFFERS ADDR

NUMB
;SAVE IT
;GET STATUS TABLE ADDRESS
OFFSET
;SAVE SEGMENT
;GET BUFFER TABLE ADDR
OFFSET
;SAVE SEGMENT
;GET CURRENT BUFFER ADDRESS

143

MOV WORD PTR CURB,BX ;SAVE OFFSET
MOV WORD PTR CURB+2,ES ;SAVE SEGMENT

SET UP INTERRUPT VECTOR

CLI
PUSH DS
MOV DX,OFFSET ISR
PUSH cs
POP DS
MOV AL,0AH
MOV AH,25H
INT 21H
POP DS

ENABLE IRQ2 ON 8259

IN AL,21H
AND AL, 11111011B
OUT 21H,AL
MOV SP,BP
POP BP
STI
RET 32

ADSET ENDP

EQUATES FOR ISR

PCTRL EQU
DTCOM EQU
DTSTAT
DTDATA
CWAIT EQU
RWAIT EQU
CDMA EQU
CRAD EQU
INTO EQU

307H
2EDH
EQU 2EDH
EQU 2ECH
4
5
lEH
0EH
310H

;DISABLE INTS
;SAVE DS

;GET VECTOR OFFSET

;DS•SEGMENT FOR INT ROUTINE
; INTERRUPT VECTOR #
;SET VECTOR FUNCTION

;SET IT
;RECOVER DS

;GET CURRENT MASKS
;RESET IRQ2

;RECOVER BP
;ENABLE INTS
;8 ARGS*4 BYTES

;8255 CONTROL REG
;A/D COMMAND REG

;A/D STATUS REG
; A/D DATA REG

;COMMAND WAIR
;READ WAIT
;A/D DMA COMMAND
;A/D NON-DMA COMMAND
;INTERRUPT DISABLE ADDRESS

CLOCK INTERRUPT ROUTINE-POINT OMA TO NEXT BUFFER

ISR PROC NEAR
CLI ;NO INTS
PUSH AX ;SAVE REGISTERS
PUSH BX
PUSH ex
PUSH DX
PUSH DS
PUSH ES
MOV AX,DSSAVE ;GET OS
MOV DS,AX ;SET IT
MOV DX,DTSTAT ;GET STATUS ADDR
IN AL,DX ;GET STATUS
TEST AL,B0H ;ERROR?
JE !SRA
JMP DTERR ;YES-EXIT

INDICATE CURRENT BUFFER IS FULL

144,

ISRA: LES BX,CURB ;GET CURB ADDRESS
MOV AX, ES: [BX) ;GET CURRENT BUFFER.*
MOV CX,AX ;COPY IT
SHL CX,l ;*2 FOR OFFSET-INTO STATUS TABLE
LES BX,BUFST ;GET STATUS TABLE BASE ADDRESS
ADD BX,CX ;ADD OFFSET
MOV WORD PTR ES: [BXJ,0FFFFH ;INDICATE FULL
MOV TEMP,BX ;SAVE OFFSET FOR LATER

CHECK FOR DONE

BX,BUFCNT ;GET BUFFER COUNT ADDRESS
;INCREMENT BUFFER COUNT

. LES
INC
MOV
CMP
JNE

WORD PTR ES:[BX)
CX,MAXB
ex, ES: [BX)

;GET MAX BUFFERS TO FILL
;DONE?

DNCHK

SET DONE FLAG

LES
MOV

DNCHK:

BX,DONEA ;GET DONE ADDRESS
WORD PTR ES: [BX),0FFFFH ;SET DqNE
LES BX,DONEA
WORD PTR ES: [BX),0 ;DONE?
ISRC ;NO

CMP
JE

ISR4: MOV
OUT
JMP

DX, INTD
DX,AL
ISROT

;GET INT DIABLE ADDRESS
;DISABLE INTS

ISRC:

ISRD:

ISRE:

NOT DONE - GOTO NEXT BUF-FER

CMP AX,NUMB · : LAST . BUFFER
JNE ISRD ;NO
MOV AX, 0 ;YES- CURB=0
LES BX,BUFST ; ES: [BX) •NEXT BUFFER STATUS ADDR
JMP ISRE
INC AX ;NEXT BUFFER
MOV BX,TEMP ;RECOVER LAST OFFSET
ADD BX,2 ;NEXT STATUS
CMP WORD PTR ES: [BX),0 ;EMPTY?
JNE OVERE
LES BX,CURB
MOV ES: [BX) ,AX

GET BASE ADDRESS

SHL AX,1
SHL AX,l
LES BX,BUFT
ADD BX,AX

SET OMA

MOV AL, 45H ·
OUT 11,AL
MOV AL,O
OUT 12,AL

AND

MOV AX, ES: [BX)
MOV CX,ES: [BX]+2

;NO-ERROR
;GET CURB ADDRESS

;SAVE CURRENT BUFFER

PAGE ADDRESS FOR DMA

;AX=OFFSET INTO TABLE
;GET TABLE ADDRESS

;ADD OFFSET

;SET DMA MODE

;RESET BYTE FLIP FLOP
;GET BASE ADDRESS FOR OMA

;GET PAGE ADDRESS

145

INTO STATUS

MOV BX,BYTB ;GET NUMBER OF BYTES
OUT 2,AL ;SET LOW BYTE OF BASE
MOV AL,AH ;AL=HIGH BYTE
OUT 2,AL ;SET HIGH BYTE OF BASE
MOV AL,BL ;GET LOW BYTE OF CONV
OUT 3,AL ;SET IT
MOV AL,BH ;GET HIGH BYTE
OUT 3,AL ;SET IT
MOV AX,CX ;AX=PAGE
OUT 83H,AL ;SET IT
MOV AL,1 ;ENABLE MASK
OUT 10,AL

ISROT: MOV AL,O
MOV DX,PCTRL ;GET INT FF ADDRESS
OUT DX,AL ;RESET FLIP FLOP
INC AL
OUT DX,AL ;RE-ENABLE IT

SIGNAL END OF INT TO 8259

MOV AL,20H

OVERE:

DTERR:
DTERl:

OUT 20H,AL

RECOVER REGS AND EXIT

POP ES
POP DS
POP DX
POP ex
POP BX
POP AX
IRET

OVERUN ERROR

JMP
MOV AX,2
DTERl

ERROR-SET DONE >O

MOV AX,1
LES BX,DONEA

MOV
JMP

ISR ENDP
CODE ENDS

END

WORD PTR ES: [BX],AX
ISR4

;GET DONE ADDR
;SET DONE

146

batch.for

$TITLE: 1 BATCH FILE PROCESSOR'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE BATCH (DR)

*
*

Process a list of data files to get profile and rut depth.

$INCLUDE:'HANDLES'
$INCLUDE:'SETCOM'

CHARACTER*l6 FILES(80),FILE
CHARACTER*3 EXT

. CHARACTER*! DR
CHARACTER*8 NAME
INTEGER*2 ROW,COL
CALL CLRSCR

EXT='DTA'

C WRITE MESSAGE
CALL SETCUR(l0,0)
WRITE(*, 1 (A\)') 'BATCH PROCESSING PROGRAM'
CALL SETCUR(ll,O)
WRITE(*, 1 (A\)') 'DO YOU WANT TO PROCESS MANY FILES? '
I=l .
CALL GCUR(ROW,COL)
CALL YESNO(I,ROW,COL,IRET)
IF (I .. EQ. 0) RETURN

C GET DRIVE
CALL DRVSEL (DR)

C GET FILENAME WITH WILD CODES
NAME='*'

50 CALL CLRSCR
CALL WRTSCR('BATCHSCR. ')
CALL SETCUR(l4,50)
WRITE(*,9010)DR,NAME,EXT

9010 FORMAT(A, ':',A8, '.'A3\)
CALL GETSTRNG(NAME,8,14,52,IRET)
CALL FNMAKE(DR,NAME,EXT,FILE,0)
ISEL=80
CALL FSELALL(FILE,ISEL,FILES)
IF(ISEL .EQ. 0)RETURN
IF(ISEL .EQ. B0)THEN
WRITE(*,' (A\)') 'TOO MANY FILES WERE SELCTED. REENTER THE '

1 'THE NAME'
CALL WAITKY
GOTO 50
ENDIF
CALL CLRSCR
CALL SETCUR(B,0)

147

WRITE(*,' (12,A\) ') ISEL,' FILES WERE SELECTED'

C PROCESS FILES

CALL KCLEAR
CALL SETCUR (10,5)
WRITE (*,'(A\)')

& '<Hit the "End" key to stop processing after this file.>'

DO 100 I= 1, ISEL
CALL SETCUR(l8,0)
WRITE(*,' (A,I2\) ') 'NOW PROCESSING FILE #',I
CALL ADDNUL (FILES (I),16)
ACCESS= 2
CALL HOPEN(FILES(I),HANDLE,ACCESS,IER)
CALL SUBNUL (FILES (I),16)
CALL HREAD(HANDLE,SET,2048,RBYTES,IER)
IF (TSTTYP .EQ. 0 .OR. TSTTYP .EQ. 4) THEN

CALL CHKSAT (HANDLE, 1)
IF (.NOT. ''ITSOK) GO TO 80

END IF
IF (TSTTYP .EQ. 3) CALL PRFCMP (HANDLE)

80 CALL HCLOSE (HANDLE,IER)
90 J = IGKEY()

IF (J .EQ. -79) RETURN
IF (J .NE. 0) GO TO 90

100 CONTINUE

RETURN_
END

14R

CALIB.FOR

$STORAGE:2
$NOFLOATCALLS

SUBROUTINE CALIB

$INCLUDE: 1 STATCOM'
$INCLUDE:'SETCOM'

INTEGER*2 ROW,COL
CHARACTER*6 BPOS
CALL CLRSCR

C WRITE OUT INSTRUCTIONS FOR FIRST STEP
CALL SETCUR(l0,0)
WRITE(*,9100)

9100 FORMAT ('PLACE THE. CALIBRATION BAR IN THE MIDDLE POSITION'/
1 'DO NOT MOVE AROUND IN THE VEHICLE'/
2 1 HIT ANY KEY TO START THE CALIBRATION')

WRITE(*, I (A\)') I '

CALL WAITKY
CALL FILCLK(l00.0)
CALL WRTSCR('CALDIS. 'l
CALL SETCUR(0,O)
WRITE(*,9000)TSTCON

9000 FORMAT('CALIBRATING CHANNELS FOR 1 ,A32, 'CONFIGURATION'\)

C WITH THE BAR IN THE ZERO POSITION
C ZERO ALL CHANNELS AND MEASURE AMPLIFIER GAINS

100 ROW=7
J=ADSTRT
DO 200 I=l,NCHAN
CALL ACAL(J,ROW)
J=J+l
IF(J .GT. 7)J=0
ROW=ROW+2

200 CONTINUE
CALL WAITKY

C WITH THE BAR IN THE TOP+BOTTOM POSITIONS- CHECK FOR APPOXIMATE
C TRANSDUCER GAINS
C DO ONLY THE HEIGHT AND RUT CHANNELS FOR ANY GIVEN CONFIGURATION

BPOS='TOP'

DO 350 I=l,2
CALL CLRSCR
CALL SETCUR(l0,0)
WRITE(*,9120)BPOS

9120 FORMAT('PLACE THE CALIBRATION BAR IN THE ',A6,' POSITION'/
1 'HIT ANY KEY TO CONTINUE THE CALIBRATION')

WRITE(*, I (A\)')' I

CALL WAITKY
CALL WRTSCR('CALDIS2. ')
CALL SETCUR(l,41)
WRITE(*,' (A6\) ')BPOS

149

ROW=?
IF (RPROF) CALL TCHECK(0,ROW,I)
IF (LPROF) CALL TCHECK(4,ROW,I)
IF (CRUT) CALL TCHECK(5,ROW,I)
IF (LRUT) CALL TCHECK(6,ROW,I)
IF (RRUT) CALL TCHECK(7,ROW,I)
BPOS.;'BOTTOM'
CALL WAITKY

350 CONTINUE

CALCON=TCONFI
CALYN=l
CALL GTIME(IH,IMIN,ISEC)
CALTIM=IH*3600+IMIN*60+ISEC
CALL WRTSET

500 RETURN
END

$PAGE

150

C
C CHECK A TRANSDUCER
C

SUBROUTINE TCHECK(IC,ROW,IPOS)

$INCLUDE:'SETCOM'
INTEGER*2 ROW
REAL HGT(8,2)

HGT(l,1)=1.036
HGT(S,1)=1.048
HGT (6, 1) =1-. 042
HGT(l,2)=-1.012
HGT(S,2)=-1.010
HGT (6, 2) =-1. 011
SC=2048./5.

J=IC+l
C WRITE NAME

CALL SETCUR(ROW,l)
WRITE(*, 1 (A8\) ')CHID(J)

C WRITE NOMINAL HEIGHT
CALL SETCUR(ROW,12)
WRITE(*, 1 (F6.3\) ')HGT(J,IPOS)

C GET ACTUAL HEIGHT AND COMPUTE ERROR
CALL A2DONE(IC,1,100.,100,AV,VNSE)
ZDV=5.*(ZDATA(J)/(GAIN(J)*2048.)-1.)
HGTA=GAIN(J)*(AV-ZDV)*SC
ERROR=l00.*(HGT(J,IPOS)-HGTA)/HGT(J,IPOS)

C WRITE ACTUAL HEIGHT
CALL SETCUR(ROW,25)
WRITE(*,' (F6.3\) ')HGTA

C WRITE ERROR
CALL SETCUR(ROW,39)
WRITE (*, ' (F7. 3 \) ') ERROR

C CHECK FOR WARNING
CALL SETCUR(ROW,51)

$PAGE

IF (ABS (ERROR) . LT. 2.) THEN
WRITE(*, I (A\) I) 'OK'
ELSE
WRITE (*, I (A\) I) I WARNING I

ENDIF
ROW=ROW+l
RETURN
END

.151

C
C CALIBRATE ONE ANALOG CHANNEL
C

SUBROUTINE ACAL(II,ROW)

$INCLUDE:'SETCOM'
INTEGER*2 ROW,COL
DIMENSION X(ll),Y(ll)
I•II+l
N=300
F=300.0
ION=l
IOFF=0
AV=0
VNSE=0
CALL SETCUR(ROW,l)
WRITE(*,9600)II,CHID(I)

9600 FORMAT(Il,3X,A8\)
C TURN OFF ·CAL RELAY

CALL CALREL(II,IOFF)
C PUT OUT LAST OFFSET

CALL ZOFF(II,IOFFS(I))
CALL TWAIT (1. 0)

C GET CURRENT OFFSET
100 CALL A2DONE(II,1,F,N,AV,VNSE)

IF (ABS (AV) . LT. 4. 5) GOTO 200
IOFFS(I)=0
CALL ZOFF(II,IOFFS(I))
CALL INERROR('ADJUST OFFSET POT-HIT ANY KEY',29)
CALL KCLEAR

150 J=IGKEY ()
IF(J .EQ. 0)GOTO 150
CALL CLRLIN(24)
IF (J .EQ. 43) GOTO 800
GOTO 100

200 CALL SETCUR(ROW,15)
WRITE(*,' (F7.4\) ')AV
CALL SETCUR(ROW+l,15)
WRITE (*, ' (F7. 4 \) ') VNSE
IF(ABS(AV) .LT. 0.04)GOTO 300
AV=-(AV-IOFFS(I)*4.8/128)
IOFFS(I)=NINT(AV/4.8*128)

250 CALL ZOFF(II,IOFFS(I))
300 CALL TWAIT(.5)

CALL A2DONE (II, 1,F,N,AV,•VNSE)
IF(ABS(AV) .LT .. 04)GOTO 400
IF(AV .LT. 0)IOFFS(I)=IOFFS(I)+l
IF(AV .GT. 0)IOFFS(Il=IOFFS(I)-1
IF(ABS(IOFFS(I)) .GT. 127)GOTO 900
GOTO 250

400 CALL SETCUR(ROW,2~)
WRITE(*, 1 (F7.4\) ')AV
CALL SETCUR(ROW+l,25)
WRITE(*,' (F7.4\) ')VNSE

ZDATA(I)=AV
CALL CLRLIN(24)

'i52

CALL SETCUR(24,30)
WRITE(*,'(A\) ') 'MEASURING AMPLIFIER GAIN'

C
C NOW DO GAIN
C TURN ON CAL RELAY

CALL CALREL(II,ION)
CALL ZOFF (II, 0)
CALL TWAIT (. 2)
XAV=O.O
YAV-=0.0
VMAX=.9*(5.0/AMPGN(I))
IF(VMAX .GT. 4.8)VMAX•4.8
V=VMAX/5.
K=NINT(V/5.0*2048)
V=K*5.0/2048
DO 500 K=-5,5
Vl=V*K
CALL CALDA (Vl)
CALL TWAIT (. 5)
CALL A2DONE(II,1,F,N,AV,VNSE)
X(K+6)=Vl
Y(K+6)=AV
XAV=XAV+Vl
YAV=YAV+AV

500 CONTINUE
XAV=XAV/11.0
YAV=YAV/11. 0
A=O.O
B=O.O
DO 600 K=l, 11
A=A+(X(K)-XAV)*(Y(K)-YAV)
B=B+(X(K)-XAV)**2

600 CONTINUE
GAIN(I)=A/B
AMPGA (I) =GAIN (I)

C
C RESTORE CARD TO ORIGINAL STATUS

CALL CALREL(II,IOFF)
CALL ZOFF(II,IOFFS(I)l
CALL CALDA(0.0)
CALL IOUTB(4,t307)
CALL CLRLIN (24)
CALL SETCUR(ROW,35)
WRITE(*,9200)AMPGN(I),AMPGA(I)

9200 FORMAT(F9.4,3X,F9.4\)
C
C CALCULATE FULL SCALE

GAIN(I)=XDUCGN(I)/GAIN(I)*5
CALL SETCUR(ROW,57)
WRITE(*,9300)GAIN(I),UNITS(I)

9300 FORMAT(F9.4,2X,A8\)
GAIN(I)-=GAIN(I)/2048.
ZDATA(I)=ZDATA(I)*GAIN(I)*2048./5.0+2048.*GAIN(I)

800 RETURN
900 CALL INERROR('UNABLE TO ADJUST OFFSET',23)

CALL CALREL(II,IOFF)
IOFFS(I)=O
CALL ZOFF(II,IOFFS(I))

)53

RETURN
END

154

CHKSAT.FOR

$TITLE:'SUBROUTINE CHKSAT'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE CRKSAT (HANDLE, AUTO)

* This subroutine checks the raw transducer signals for saturation.
*
* --> HANDLE int*2
*' --> AUTO int*2

handle for tape file that gets checked.
code indicating interactive or auto modes.

*
*

0 • interactive, 1 • don't truncate if error,
2 = truncate if error, 3 = interactive if err.

$INCLUDE: 1 BUFCOM 1

$INCLUDE:'HANDLES'
$INCLUDE: 'SETCOM'

INTEGER*2 IERR,MIN (8), MAX (8), AUTO
INTEGER*4 I, NS,LMIN (8), LMAX (8), NMIN (8), J,

& NMAX (8), OFF, IB, NBUF, COUNT (8), LSATl

* Set bogus parameters for bounce test.

IF (TSTTYP .EQ. 1 .AND. NSAMP .GT. 4110) NSAMP = 4112

* * Set the number of samples contained in the PC buffer and the
* number of buffers.
*

MAXBUF = MXBFSZ
NS= MAXBUF * 2 / NCHRAW
IF (NS .GT. NSAMP) NS c NSAMP
NBUF = NSAMP / NS
IF (MOD (NSAMP, NS) .NE. 0) NBUF NBUF + 1

*
*
*

Loop to read and check data, a buffer at a time.

DO 30 IB = O, NBUF - 1
CALL SETCUR (20,0)
WRITE (*,9500)IB+l,NBUF

9500 FORMAT('CHECKING RAW DATA. LOOKING AT BUFFER #',13,' OF',13\)
CALL SETCUR(21,0)
WRITE (*, I (I I READING. . . I I\) I)

OFFSET= IB *NS* NCHRAW * 2
IF (IB .EQ. NBUF - 1) NS= NSAMP - IB * NS
BYTES= NS* NCHRAW * 2
CALL RDTAPE (HANDLE, PCBUFI, OFFSET, BYTES, IERR)

CALL SETCUR(21,0)
WRITE (*, I (I I CHECKING. . . I I\) I)

*
* Initialize variables for searching.
*

IF (IB .EQ. 0) THEN
DO 10 I= 1, NCHRAW

155

*

IF (I .EQ. ICHV) THEN
IF (TSTTYP .EQ. 1) THEN

DO 5 J = I, NS* NCHRAW + I, NCHRAW
5 PCBUFI (J) • 3800

OFFSET= IB *NS* NCHRAW * 2
BYTES= NS* NCHRAW * 2
CALL WRTAPE (HANDLE, PCBUFI, OFFSET, BYTES, IERR)

END IF
MIN (I) = PCBUFI (I)
MAX (I) = PCBUFI (I)

ELSE IF (I .EQ. ICHAl .OR. I .EQ. ICHA2) THEN
MIN (I) = 10
MAX (I) 4090

ELSE
MIN (I) 400
MAX (I) 3700

END IF

COUNT (I) = 0
NMIN (I) 0
LMIN (I) 0
NMAX (I) 0
LMAX (I) 0

10 CONTINUE
END IF

* Check all channels in this buffer.
*

*

&

&

OFF= OFFSET/ NCHRAW / 2
DO 20 I =l, NCHRAW

CALL SATMAX (PCBUFI (I), NCHRAW, NS, OFF, MAX
COUNT (I), NMAX (I), LMAX (I))

CALL SATMIN (PCBUFI (I), NCHRAW, NS, OFF, MIN
COUNT (I), NMIN (I), LMIN (I))

20 CONTINUE
30 CONTINUE

* Merge Max, Min saturations.
*

DO 40 I =1, NCHRAW
NSAT (I) = NMAX (I) + NMIN (I)
LSAT (I) = LMIN (I)
IF (LMAX (I) .GT. I.MIN (I))LSAT (I)

40 CONTINUE
LMAX (I)

* Convert min and max speed values to eng. units.

ITSOK = .TRUE.
IF (ICHV .NE. 0) THEN

VELMIN = MIN (ICHV) * GAIN (3) - ZDATA (3)
VELMAX = MAX (ICHV) * GAIN (3) - ZDATA (3)

THEMAX = 4090. * GAIN (3) - ZDATA (3)

(I) '

(I) '

IF (VELMIN * SCLFV .GT. 3 .. AND. VELMAX .LT. THEMAX)
& NSAT (ICHV) = 0

END IF

* Set logical variable if any saturation was found

156

LSATl - PASSA
DO 210 I= 1, NCHRAW

IF (NSAT (I) .NE. O)THEN
ITSOK - .FALSE.
IF (LSAT (I) .LT. LSATl) LSATl = LSAT (I)

END IF
210 CONTINUE

IF (TSTTYP .EQ. 0 .OR. TSTTYP .EQ. 4) TSTTYP 3
IF (TSTTYP .EQ. 1) TSTTYP = 5

* Guard against low or negative speed.

IF (ICHV .NE. 0) THEN
IF (VELMIN * SCLFV .LT. 3.) THEN

TSTTYP = 4
ITSOK = .FALSE.

END IF
END IF

* Display results if interactive and it's ok.

IF ((AUTO .EQ. 0) .AND. ITSOK) THEN
CALL TSTDIS
CALL WAITKY

* Display results and prompt user if it's not ok.

ELSE IF((AUTO .EQ. 3 .OR. AUTO .EQ. 0) .AND .. NOT. ITSOK) THEN
CALL TSTDIS
CALL SETCURS (23,0)
WRITE (*,9000)

9000 FORMAT ('Do you want to shorten the run to eliminate ',
& 'questionable data?'\)

I ,. 0
CALL YESNO (I, 23, 64, IRET)
IF (I .EQ. 1) THEN

CALL CLRLIN (23)
CALL SETCURS (23,0)
WRITE (*, 1 (A\)') 'End run at X = '
XUL = PASSA * DELTAX
XLL = 0
X = (LSATl - 1) * DELTAX
CALL GETR (X, XLL, XUL, 23, 16, 9, '(F9 .2\) ', IRET)
PASSA = X / DELTAX - 1
IF (LSATl .GT. PASSA) THEN
DO 50 I= 1, NCHRAW

50 NSAT(I) = 0
END IF
END IF

* If it's not ok, and AUTO=2, and the speed was olc, then fix it ..

ELSE IF (AUTO .EQ. 2 .AND .. NOT. ITSOK) THEN
IF (TSTTYP .EQ. 3) PASSA = LSATl - l

END IF

* Set defaults for viewing data.

157

$PAGE

AVEBAS = 50.
FLTBAS = 50.
XCURS = 5.
XRANGE = 100.
PSTART = 0.
PSTOP = PASSA * DELTAX
PINC = 100.

CALL UPDSET (HANDLE)
RETURN
END

158

~***********************
SUBROUTINE SATMAX (ARRAY, NCH, NS, OFFSET, MAX, COUNT, NSAT,

& LSAT)
**
* This checks a raw data signal for saturation at an upper limit.
* It finds the max value of the signal, and looks for 2 or more
* consecutive samples at that limit.
*
*
*
*
*
*
*
*
*
*
*

--> ARRAY
--> NCH
--> NS
--> OFFSET
<-> MAX

<-> COUNT

<-> NSAT
<-> LSAT

int*2
int*4
int*4
int*4
int*2

int*4

int*4
int*4

2-D input array. Channel 1 is checked.
number of channels in ARRAY.
number of samples in ARRAY.
samples previously processed.
maximum value in signal. Initially, MAX
should be given a valid value.
counter to see if signal stays at max
level for 2 adjacent samples.
number of saturations in signal.
location (sample no.) of first saturation.

**
$LARGE: ARRAY

INTEGER*2 ARRAY(*), MAX, Y
INTEGER*4 NSAT, LSAT, NFW, I, OFFSET, NS, NCH, COUNT

*
* Comments? "The source code is obvious."
*

NFW =NCH* NS
DO 10 I• 1, NFW, NCH

Y = ARRAY (I)
IF (Y .LT. MAX) THEN

COUNT= 0
ELSE IF (Y .GT. MAX) THEN

MAX = y
NSAT = 0
LSAT - 0
COUNT 1

ELSE
COUNT COUNT+ 1
IF (COUNT .EQ. 2) THEN

NSAT = NSAT + 1
IF (LSAT .LT. 1) LSAT

END IF
END IF

10 CONTINUE
RETURN
END

$PAGE

OFFSET+ I/ NCH - 1

159

**
SUBROUTINE SATMIN (ARRAY, NCH, NS, OFFSET, MIN, COUNT, NSAT,

& LSAT)
**
* This checks a raw data signal for saturation at a lower limit.
* It finds the MIN value of the signal, and looks for 2 or more
* consecutive samples at that limit.
*
*
*
*
*
*
*
*

*
*
*

--> ARRAY
--> NCH
--> NS
--> OFFSET
<-> MIN

<-> COUNT

<-> NSAT
<-> LSAT

int*2
int*4
int*4
int*4
int*2

int*4

int*4
int*4

2-D input array. Channel 1 is checked.
.number of channels in ARRAY.
number of samples in ARRAY.
samples previously processed.
minimum value in signal. Initially, MIN
should be given a valid value.
counter to see if signal stays at min
level for 2 adjacent samples.
number of saturations in signal.
location (sample no.) of first saturation.

**
$LARGE: ARRAY

INTEGER*2 ARRAY(*), MIN, Y
INTEGER*4 NSAT, LSAT, NFW, I, OFFSET, NCH, NS, COUNT

*
* Comments? "The source code is obvious."
*

NFW =NCH* NS
DO 10 I= 1, NFW, NCH

Y = ARRAY (I)
IF (Y .GT. MIN) THEN

COUNT= 0
ELSE IF -(y .LT. MIN) THEN

MIN== Y
NSAT = 0
LSAT = 0
COUNT 1

ELSE
COUNT COUNT+ 1
IF (COUNT .EQ. 2) THEN

NSAT = NSAT + 1
IF (LSAT .LT. 1) LSAT

END IF
END IF

10 CONTINUE
RETURN
END

OFFSET+ I/ NCH - 1

160

C
C CONFIGURE SYSTEM
C

CONFIG.FOR

$TITLE:'CONFIGURE'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE CONFIGURE

$INCLUDE: 1 STATCOM 1

$INCLUDE:'SETCOM'
CHARACTER*32 IMENU(ll)
INTEGER* 2 MA (11)
MI=ll
DO 10 I=l,5

10 MA(I)=l
DO 12 1=6,11

12 MA(I)=0

IMENU(l)='SELECT CONFIGURATION'
IMENU(2)='LEFT PROFILE'
IMENU(3)='RIGHT PROFILE'
IMENU(4)='LEFT AND RIGHT P~OFILE'
IMENU(S)='LEFT + RIGHT PROFILE+ MID RUT'
IMENU(6)='LEFT PROFILE AND LEFT RUT'
IMENU(7)•'LEFT+RIGHT PROFILE+LEFT+MID RUT'
IMENU(8)='ALL THREE RUTS'
IMENU(9)='LEFT PROFILE AND ALL RUTS'
IMENU(l0)•"RIGHT PROFILE AND ALL RUTS'
IMENU(ll)='LEFT+RIGHT PROFILE+ ALL RUTS'

C SET DEFAULT TO
IDEF=TCONFI

C GET SELECTION
50 CALL MENU(IMENU,MI,MA,IDEF,IRET)

CALL CLRSCR

C SET CONFIGURATION NUMBER AND STRING
TCONFI=IRET
TSTCON=IMENU(IRET+l)

C READ IN NUMBER OF CHANNELS, A/D START CHANNEL,
C A/D STOP CHANNEL, BUFFER OFFSETS,AND OTHER VARIABLES
C FOR PROCESSING

OPEN (9, FILE• 'CONFIG. SET ', ACCESS• 'DIRECT', FORM- "FORMATTED',
l RECL=54)

READ (9, 1000,REC=TCONFI) (SET (I), 1=493, 511),
l LPROF,RPROF,LRUT,CRUT,RRUT,NCHRAW,NCHPRF,NCHRUT

1000 FORMAT(l9(IS),S(LS),3(IS))
CLOSE (9)

161

C RETURN TO MAIN PROGRAM
RETURN
END

162

CNTTST.BAS

3 REM 3/12/85 9:40
5 REM CNTTST.BAS
6 REM SETS UP 9.513 CHIP AND RELATED CIRCUITRY
7 REM FOR TROUBLE SHOOTING AND CHECK OUT
8 REM
10 PORTA%=&H304
20 PORTB%=&H305
30 PORTC%=&H306
40 CNTRL%=&H307
50 TIMERD%=&H308
60 TIMERC%=&H309
70 INTD%=&H310
80 KEYBD%=&H300
90 INTE%=&H30C
100 CONTROL%=&H90
110 OUT CNTRL%,CONTROL%
120 OUT CNTRL%,2
150 REM RESET COUNTER AND SET UP
160 OUT TIMERC%,&HFF 'RESET
170 OUT TIMERC%,&H5F 'LOAD ALL =0
180 OUT TIMERC%,&HDF 'DISARM ALL
190 OUT TIMERC%,&HE8 'DISABLE SEQUENCING
200 OUT TIMERC%,&Hl7 'POINT TO MASTER MODE
210 OUT TIMERD%,&HDO 'SEND LOW BYTE
220 OUT TIMERD%,&H49 'SEND HIGH BYTE
230 REM SET UP COUNTER #1 TO COUNT Fl REPEATEDLY (300.02 HZ)
240 OUT TIMERC%,&Hl 'POINT TO COUNTER 1 MODE REG
250 OUT TIMERD%,&H21 'SET MODE
260 OUT TIMERD%,&HB
270 OUT TIMERC%,&H9 'POINT TO LOAD REG
280 OUT TIMERD%,&H12
290 OUT TIMERD%,&H1F
300 REM SET UP COUNTER #2 FOR 25.3868 KHZ FOR A/D CLOCK
340 OUT TIMERC%,&H2 'POINT TO COUNTER 2 MODE REG
350 OUT TIMERD%,&H22 'SET MODE
360 OUT TIMERD%,&HB
370 OUT TIMERC%,&HA 'POINT TO LOAD REG
380 OUT TIMERD%,47
390 OUT TIMERD%,&HO
400 REM SET UP COUNTER 3 TO COUNT OUT2 BY 5
440 OUT TIMERC%,&H3 'POINT TO COUNTER 3 MODE REG
450 OUT TIMERD%,&HA5 'SET MODE
460 OUT TIMERD%,&HD3
470 OUT TIMERC%,&HB 'POINT TO LOAD REG
480 OUT TIMERD%,&H5
490 OUT TIMERD%,&HO
540 OUT TIMERC%,&H4 'POINT TO COUNTER 4 MODE REG
550 OUT TIMERD%,&H21 'SET MODE
560 OUT TIMERD%,&H14
570 OUT TIMERC%,&HC 'POINT TO LOAD REG
580 OUT TIMERD%,&HA

163

590 OUT TIMERD%,&H0
600 REM SET UP COUNTER 5 FOR FILTER CLOCK
640 OUT TIMERC%,&H5 'POINT TO COUNTER 5 MODE REG
650 OUT TIMERD%,&H22 'SET MODE
660 OUT TIMERD%,&HB
670 OUT TIMERC%, &HD 'POINT TO LOAD REG
680 OUT TIMERD%, 119
690 OUT TIMERD%,&H0
700 OUT TIMERC%,&H7E 'LOAD AND ARM ALL
710 OUT TIMERC%, &H61
720 OUT CNTRL%,3

164

GETELV.FOR

$TITLE:'SUBROUTINE GETELV'
$NOFLOATCALLS
$STORAGE:2

SUBROUTINE GZTZLV (SKPLOT, NSMP, MOVAVl, MOVAV2, QNDPLT, HANDLE,
& IERR)

**
* This subroutine is for getting elevation profiles from tape so
* they can be plotted.

*
* •
*
*
*
*
•
*

*

SKPLOT int*4

NSMP
MOVAVl
MOVAV2
QNDPLT
HANDLE
IERR

int*4
int*4
int*4
logical
int*2
int*2

number of samples to skip before plotting.
This number should be calulated as X/DX .
number of samples to plot.
number of samples in moving average.
number of samples in 1/2 moving average.
switch for Quick-n-dirty plotting.
handle for file with processed profile.
error code. 0=cool.

* Important variables.unique to this subroutine:
* START int*4 samples to skip before reading from tape.
* Nl-NS int*4 number of samples in five regions.
* NS int*4 number of samples to read from tape.
* NTOT int*4 total number of samples on tape.
* SKPELV int*4 no. of samples to skip to get starting elevation.
* WHICH int *2 l=slope profile, 3=elevation profile ..
**
$INCLUDE:'SETCOM'
$INCLUDE: 'BUFCOM'
**

INTEGER*2 WHICH, IERR, HANDLE
INTEGER*4 SKPLOT, NSMP, MOVAVl, MOVAV2, START, Nl, N2, N3, N4,

& NS, NS, NTOT, I, ICH, SKPELV, Il,. I2
LOGICAL QNDPLT

*
* Calculate sizes of S regions, Nl - NS.
*

*

N3 "'NSMP
IF (QNDPLT) THEN

WHICH= 3
NTOT = NSRTOT

ELSE
WHICH= 1
NTOT = NSPTOT

END IF

IF (SKPLOT .GE. MOVAV2) THEN
N2 • MOVAV2
Nl = 0
START= SKPLOT - N2

ELSE
N2 = SKPLOT
Nl = MOVAV2 - N2
START= 0

165

*
END IF

IF (SKPLOT + N3 + MOVAVl - MOVAV2 .LE. NTOT + 1) THEN
N4 MOVAVl - MOVAV2
NS a 0

ELSE
N4
NS

NTOT + 1 - SKPLOT - N3
MOVAVl - MOVAV2 - N4

END IF

*
* If Q-n-D, read elevation data. Check to see if last point
* (defined as having zero elevation but not contained in the
* file) should be added.

*
IF (QNDPLT) THEN

* WRITE (6,*) 'IN GETELV, QND. HANDLE, Nl,N2,N3,N4,NS,ISTART=',
* & HANDLE,Nl,N2,N3,N4,N5,START

NS= N2 + N3 + N4
CALL RDTAPD (HANDLE, PCBUFR (Nl * NCHPRF + 1), WHICH,

& START, NS, !ERR)
* WRITE (6,*) 'IN GETELV, AFTER RDTAPD: NS, !ERR=', NS, !ERR

IF (NS .LT. N2 + N3 + N4) THEN
DO 10 ICH = 1, NCHPRF

10 PCBUFR ((Nl + NS) * NCHPRF + ICH) 0
END IF

*
* If not Q-n-D, read slope profile data. Increase NS if
* needed to get to the next elevation benchmark. Then integrate
* slope profile backwards to get elevation.

*
ELSE

* WRITE (6,*) 'IN GETELV, NO QND. HANDLE, Nl,N2,N3,N4,N5,ISTART=',
* & HANDLE,Nl,N2,N3,N4,NS,START

NS= N2 + N3 + N4
SKPELV = (START+ NS) / TRIM
IF (START+ NS .EQ. TRIM* SKPELV) SKPELV = SKPELV - 1
NS= (SKPELV + 1) * TRIM - l - START
CALL RDTAPD (HANDLE, PCBUFR ((1 + Nl) * NCHPRF + 1), WHICH,

& START, NS, !ERR)
* WRITE (6,*) 'IN GETELV, AFTER RDTAPD: NS, !ERR=', NS, !ERR

*

IF (SKPELV .EQ. NSRTOT) THEN
DO 20 ICH = 1, NCHPRF

20 PCBUFR ((Nl + NS) * NCHPRF + ICH) 0

&

30
&

40

ELSE
WHICH= 3
I = 1
CALL RDTAPD (HANDLE, PCBUFR ((1 + Nl + NS) * NCHPRF + 1),

WHICH, SKPELV, I, IERR)
WRITE (6, *)

END IF
'AFTER RDTAPD TO GET ELV REF: NS, !ERR=', I, !ERR

DO 40 ICH = 1, NCHPRF
Il = Nl * NCHPRF + ICH
I2 = (Nl + NS) * NCHPRF
DO 30 I =I2, Il,-NCHPRF
PCBUFR (I) = PCBUFR (I+

PCBUFR (I)
CONTINUE

END IF

+ ICH

NCHPRF) * COFINT + DELTAX *

166

*
* Filter profile(s) using the HIPASS subroutine (moving average).
*

IF (TSTTYP .EQ. 6) RETURN

DO 50 ICH = 1, NCHPRF
50 CALL HIPASS (PCBUFR (ICH), NCHPRF, Nl, N2 ,N3, N4, NS,

& MOVAVl, MOVAV2)
RETURN
END

167

GETLEN.FOR

$TITLE:'SUBROUTINE GETLEN'
$NOFLOATCALLS
$STORAGE:2

SUBROUTINE GETLBN (X, XLL, XUL, UNITS, TITLE, PROMPT, IRET)

* This subroutine prompts the user for some type of length measure.
* or range. It is used to get plot scales, baselengths, and so
* forth. The menu provided the user will have XLL as the first
* option, XUL as the last, and will include X in the middle.'
*

*
*
*
*

*
*
*
*
*

<->
-->
-->
-->
-->
-->
<->

X real*4
XLL real*4
XUL real*4
UNITS char*S
TITLE char*32
PROMPT char*60
IRET int*2

INTEGER*2 MA(25)

number that is updated.by the subroutine.
lower limit of allowable values for X.
upper limit of allowable values for X.
name of units used for X.
heading for menu used to get X from user.
prompt to use for "custom". entry.
return code. 0=ok, i=cancel. If IRET is initially
< 0, then -1 might be returned, indicating help
was requested. · ·

CHARACTER*8 UNITS, STRl
CHARACTER*32 IM (26), TITLE, IM1(25)
CHARACTER*60 PROMPT
REAL STNDRD (24), VALUES (24)
EQUIVALENCE (IM(2),IM1)

DATA MA/25*1/
DATA STNDRD / .001, .002, .oos, .01, .02, .OS, .1, .2, .s,1.,2.,s.,

& 10.,20.,so.,100.,200.,soo.,1000.,
& 2000.,sooo.,10000.,20000., 100000.1

* Build the array VALUES with the menu options for X. Start with
* values XLL and XUL and all standard numbers in between.

IF (X .LT. XLL) X a XLL
IF (X .GT. XUL) X = XUL

DO 1 I= 1, 23
IF (STNDRD (I) .LE. XLL * 1.0001) I1 = I + 1
IF (STNDRD (I) .LE. XUL * 1. 0001) I2 I + 1

1 CONTINUE

VALUES (1) = XLL
DO 2 I= Il, 12 -1

2 VALUES (I+ 2 - Il) = STNDRD (I)

IF (STNDRD (I2 -1) .LT. XUL) THEN
I2 = 12 + 1
VALUES (12 + 1 - Il) = XUL

END IF

NLIST = I2 - Il + 1

168

NMENU = NLIST

* Now make room for X if it isn't already in the list.

DO 5 I= 2, NLIST
IF (X .GT. VALUES (I-1) .AND. X .LT. VALUES (I)) THEN

NMENU = NMENU + 1
DO 4 J = NMENU, I+ 1, -1

4 VALUES (J) = VALUES (J -1)
VALUES (I) = X
GO TO 6

END IF
5 CONTINUE
6 CONTINUE

* Create list for MENU subroutine and set default.

IDEF = 1
DO 11 I= 1, NMENU

L = 8
CALL STRX. (VALUES (I), STRl, L)
!Ml (I) = ' '
!Ml (I) (9-L:) - S'l'Rl
!Ml (I) (10:) • UNITS
IF (VALUES (I) .EQ. X) IDEF = I

11 CONTINUE
NMENU = NMENU + 3
IM (1) = TITLE
IM (NMENU-1) CUSTOM'
IM (NMENU) = CANCEL'

C Let user make choice.

20 CALL MENU (IM, NMENU, MA, IDEF, I)

IRET = 0
IF (I .EQ. NMENU - 1) THEN

IRET = 1
ELSE IF (I .EQ. NMENU -· 2) THEN

CALL SETCUR (NMENU + 5, 1)
WRITE (*, 1 (A\)') PROMPT
CALL HOWLNG (PROMPT, 60, L)
CALL GETR (X, XLL, XUL, NMENU + 5, L + 2, 9, '(F9.3\) ',I2)

ELSE
X = VALUES (I)

END IF
RETURN
END

169

INITP.FOR

$STORAGE:2
$NOFLOATCALLS

SUBROUTINE INITP

$INCLUDE:'IOPARMS'
$INCLUDE:'SETCOM'
$INCLUDE:'STATCOM'

DOUBLE PRECISION Dl,D2,D3,Sl,S2,S3,Tl,T2,T3,T4,XE,XDIV,XSUM
CHARACTER*16 FN
CHARACTER*! DR
CHARACTER*3 EXT
LOGICAL*2 EXIST
FN='C:SETUP.SET
CALL CLRSCR

C INITIALIZE STATUS VARIABLES
TINIT=0
CALYN=0
CALCON=0
CALTIM=l500

C READ IN SETUP
CALL RDSET

C CHECK DATA TRANSLATION BOARD

C WRITE MESSAGE
CALL SETCUR(0,0)
WRITE(*,' (A\)') 'CHECKING DATA TRANSLATION BOARD-'

C STOP AND CLEAR DT BOARD
CALL DTCLEAR

C WAIT FOR STATUS BIT
CALL PWAIT(DTSTAT,CWAIT,0)

C SEND TEST COMMAND
CALL IOUTB(CTST,DTCOM)

C CHECK TO SEE IF DATA OUT REGISTER INCREMENTS

IE=0
DO 10 J=l,255
CALL PWAIT(DTSTAT,RWAIT,0)
IF(J .NE. INPB(DTDATA))IE=IE+l

10 CONTINUE
CALL SETCUR(0,33)
IF(IE .EQ. 0)THEN
WRITE(*, I (A\)') 'PASSED'
ELSE
WRITE(*,9000)IE

9000 FORMAT('FAILED',I3,' TIMES'\)
ENDIF

C CHECK FLOATING POINT PROCESSOR

170

CALL SETCUR(l;0)
WRITE(*,' (A\)') 'CHECKING FLOATING POINT PROCESSOR-'

C SET CONSTANTS
Dl=l.0D0
D2•10.0D0
D3=9.99D0**20.0D0
S1=2.302585092994046D0
S2=2.718281828459045D0
S3=9.80188864829535D+l9
Tlm.8414709848078965DO
T2=.54030230586~1398DO
T3=1.55740)724654902D0
T4=.7853981633974483D0
XE=.0000O0OO0O0OOOlDO
IE=0
XSUM =0
XDIV=Dl/7. ODO
DO 30 I=l,7

30 XSUM=XSUM+XDIV
IF(ABS(XSUM-Dl) .GT. XE)IE=IE+l
IF(ABS(DSIN(Dl)-Tl) .GT. XE)IE=IE+l
IF(ABS(DCOS(Dl)-T2) .GT. XE)IE=IE+l
IF(ABS(DTAN(Dl)-T3) .GT. XE)IE=IE+l
IF(ABS(DATAN(Dl)-T4) .GT. XE)IE=IE+l
IF(ABS(LOG(D2)-Sl) .GT. XE)IE=IE+l
IF(ABS(EXP(Dl)-S2) .GT. XE)IE=IE+l
IF (ABS(D3-S3) .GT. XE)IE=IE+l
CALL SETCUR(l,35)
IF(IE .EQ. 0)THEN
WRITE(*,' (A\)') 'PASSED'
ELSE
WRITE(*,9010)IE

9010 FORMAT('FAILED',I2, 'TIMES'\)
ENDIF
CALL WAITKY
RETURN
END

171

IOEX.FOR

$STORAGE:2
$NOFLOATCALLS

SUBROUTINE IOEX

$INCLUDE: 'IOPARMS'
CHARACTER*32 IMENU(l2)

INTEGER*2 MA(l2)
MI=l2

DO 10 I=l,MI
10 MA(I)=l

IMENU(l)='INPUT/OUTPUT EXERCISER'
IMENU(2)='SET CALIBRATION D/A'
IMENU(3)='CALIBRATION RELAY'
IMENU(4)='SET OFFSET'
IMENU(S)='READ A/D'
IMENU(6)='WAIT FOR A SPECIFIED TIME'
IMENU(7)='CLEAR DATA TRANSLATION BOARD'
IMENU(B)='SET DATA TRANSLATION CLOCK'
IMENU(9)='SET FILTER CLOCK'
IMENU(l0)='RESTORE ANALOG'
IMENU(ll)='A/D REFERENCE'
IMENU(l2)='EXIT TO MAIN MENU'

IDEF=l

C SKIP OVER WAIT KEY
GOTO ll0

100 CALL WAITKY

C GET MENU SELECTION

110 CALL MENU(IMENU,MI,MA,IDEF,IRET)
IDEF=IRET

CALL CLRSCR
CALL SETCUR (1, 0)
WRITE (*' I (A\) I) !MENU (IRET+l)

GOTO (500,1000,1500,2000,2500,3000,3500,4000,4500,5000,5500)IRET

C SET CALIBRATION D/A

500 V=0.0
CALL SETCUR(l2,30)

510 WRITE(*,' (A\)')' VOLTAGE='
CALL GCUR(IROW,ICOL)

CALL GETR(V,-5.0,5.0,IROW,ICOL,5,' (F5.2\) ',IRET)
CALL CALDA (V)
GOTO 100

C TURN ON/OFF CALIBRATION RELAY

1000 I=0
CALL SETCUR(l2,30)

172

1010 WRITE(*,' (A\)')' CHANNEL='
CALL GCUR(IROW,ICOL)

CALL GETI(I,0,15,IROW,ICOL,2 , 1 (12\) ',IRET)
K=l
CALL SETCUR(15,30)
WRITE (*, I (A' l I) ' ON'? I

CALL GCUR(IROW,ICOL)
K=l

CALL YESNO(K,IROW,ICOL,IRET)
CALL CALREL(I,K)

GOTO 100

C SET OFFSET ON ANALOG CARD

1500 I=0
CALL SETCUR(12,30)

1510 WRITE(*,'(A\) ')' CHANNEL='
CALL GCUR(IROW,ICOL)

C
CALL GETI (I, 0, 15, IROW, ICOL, 1, 1 (Il \) ', IRET)

K=0
CALL SETCUR(15,30)

WRITE(*,' (A\)')' VALUE(-12B<V<-127) '
CALL GCUR(IROW,ICOL)

CALL GETI(K,-12B,127,IROW,ICOL,4,' (14\) ',IRET)
CALL ZOFF(I,K)

GOTO 100

C READ A/D

2000 I=0
CALL SETCUR(9,30)

2010 WRITE(*,' (A\)')' CHANNELs '

CALL GCUR(IROW,ICOL)
CALL GETI(I,0,15,IROW,ICOL,1,' (Il\) ',IRET)

K=0
CALL SETCUR(12,30)

WRITE(*,' (A\)')' GAIN='
CALL GCUR(IROW,ICOL)

CALL GETI(K,0,3,IROW,ICOL,1, '(Il\) ',IRET)
F=lOO.0
CALL SETCUR(15,30)

WRITE(*, I (A\)') I FREQUENCY='
CALL GCUR(IROW,ICOL)

CALL GETR(F,14.0,1000.,IROW,ICOL,7, '(F7.2\) ',IRET)
N-100
CALL SETCUR(lB,30)

WRITE (*' I (A') I) I NUMBER OF POINTS= I

CALL GCUR(IROW,ICOL)
CALL GETI(N,3,16384,IROW,ICOL,5, '(15\) ',IRET)
AV=O
VNSE=0
CALL A2DONE(I,K,F,N,AV,VNSE)

CALL SETCUR(21,30)
WRITE(*,2400) AV

C WRITE OUT RESULTS

173

CALL SETCUR(23,30)
WRITE(*,2450) VNSE

GOTO 100
2400 FORMAT('AVERAGE=',F8.3\)
2450 FORMAT('RMS NOISEa',F8.5\)

C WAIT FOR A SPECIFIED TIME

2500 F=l. 0
CALL SETCUR(12,30)

2510 WRITE(*,' (A\)')' TIME TO WAIT='
CALL GCUR(IROW,ICOL)

CALL GETR(F, .06,3600.,IROW,ICOL,7, 1 (F7.2\) ',IRET)
CALL TWAIT(F)
GOTO 100

C CLEAR DATA TRANSLATION BOARD

3000 CALL DTCLEAR
GOTO 100

C SET A/D CLOCK

3500 F=25000.0
CALL SETCUR(12,30)

C
3510 WRITE(*,' (A\)')' DT CLOCK FREQUENCY='

CALL GCUR(IROW,ICOL)

CALL GETR(F,15.0,25000.,IROW,ICOL,8,' (FB.2\) ',IRET)
CALL DTCLOCK(F)

GOTO 100

C SET FILTER CLOCK

4000 F=l50.0
CALL SETCUR(12,30)

4010 WRITE(*,' (A\)')' CUTOFF FREQUENCY='
CALL GCUR(IROW,ICOL)

CALL GETR(F,20.0,150.0,IROW,ICOL,6,' (F6.2\) ',IRET)
CALL FILCLK(F)

GOTO 100

C RESTORE ANALOG CARDS

4500 CALL RESTOR
GOTO 100

C TURN REFERENCE ON/OFF

5000 CALL SETCUR(12,30)
WRITE(*,' (A\)') 'REFERENCE ON?'
CALL GCUR(IROW,ICOL)
I=O
CALL YESNO(I,IROW,ICOL,IRET)
I=I+8
CALL IOUTB(I,CNTRL)
GOTO 100

174 .·

C EXIT

5500 RETURN
END

175

IOSUBS.FOR

$TITLE:'I/O SUBROUTINES'
$STORAGE:2
$NOFLOATCALLS
C
C SET CAL D/A
C

SUBROUTINE CALDA(VOLTS)

INTEGER*2 HIGH,V
$INCLUDE: 'IOPARMS'

K=0
L=#00FF
M=8
CALL IOUTB(DAEN,CNTRL)
CALL TWAIT (. 2)
CALL DTCLEAR
v~NINT((VOLTS+S.0)*4096.0/10.0)
CALL PWAIT(DTSTAT,CWAIT,K)

$PAGE

CALL IOUTB(CDA,DTCOM)
CALL PWAIT(DTSTAT,WWAIT,WWAIT)
CALL IOUTB(K,DTDATA)
HIGH=ISHFTR(V,M)
LOW=IAND(L,V)
CALL PWAIT(DTSTAT,WWAIT,WWAIT)
CALL IOUTB(LOW,DTDATA)
CALL PWAIT(DTSTAT,WWAIT,WWAIT)
CALL IOUTB(HIGH,DTDATA)
CALL PWAIT(DTSTAT,CWAIT,K)
RETURN
END

176

C
C CLEAR DT BOARD
C

SUBROUTINE DTCLZAR

$INCLUDE:'IOPARMS'
K=O

$PAGE

CALL IOUTB(CSTOP,DTCOM)
I=INPB (DTDATA)
CALL PWAIT(DTSTAT,CWAIT,K)
CALL IOUTB(CCLEAR,DTCOM)
RETURN
END

177

C
C SET DT CLOCK
C

SUBROUTINE DTCLOCK(F)

$INCLUDE:'IOPARMS'

$PAGE

INTEGER*4 V
INTEGER*2 HIGH
CALL DTCLEAR
T=l/F*l.0E6
M=8
L=f00FF
V=NINT(T/1.25-32768)+32768
CALL PWAIT(DTSTAT,CWAIT,K)
CALL IOUTB(CCLOCK,DTCOM)
HIGH=ISHFTR(V,M)
LOW=IAND(V,L)
CALL PWAIT(DTSTAT,WWAIT,WWAIT)
CALL IOUTB(LOW,DTDATA)
CALL PWAIT(DTSTAT,WWAIT,WWAIT)
CALL IOUTB(HIGH,DTDATA)
CALL PWAIT(DTSTAT,CWAIT,K)
RETURN
END

178

C
C SET CAL RELAY ON OR OFF
C ION=0=OFF ION=l=ON
C

SUBROUTINE CALREL(I,ION)

$INCLUDE:'IOPARMS'
CALL IOUTB(I,AADDR)
K=CRON
IF(ION .EQ. 0)K=CROFF
CALL IOUTB('K,CNTRL)
RETURN
END

179

C
C SET OFFSET ON CHANNEL I TO IVAL
C

SUBROUTINE ZOFF(I,IVAL)

$INCLUDE:'IOPARMS'

$PAGE

CALL IOUTB(I,AADDR)
CALL IOUTB(IVAL,ADATA)
CALL IOUTB(ZAEN,CNTRL)
T=.1
CALL TWAIT(T)
CALL IOUTB(DASON,CNTRL)
CALL IOUTB(DASOFF,CNTRL)
CALL IOUTB(ZDIS,CNTRL)
RETURN
END

180

C
C SET UP DT A/D
C

SUBROUTINE SBTAD(AD)

INTEGER*2 AD(5)
$INCLUDE:'IOPARMS'

K=O
CALL DTCLEAR
CALL PWAIT(DTSTAT,CWAIT,K)
CALL IOUTB(CSAD,DTCOM)
DO 10 I=l,5
CALL PWAIT(DTSTAT,WWAIT,WWAIT)
CALL IOUTB(AD(I),DTDATA)

10 CONTINUE
RETURN
END

$PAGE

181

C
C SET UP DMA CONTROLLER FOR A/D
C

$PAGE

SUBROUTINE SETDMA(DM)

INTEGER*2 DM (5)
CALL IOUTB(#0045,11)
CALL IOUTB(0,12)
CALL IOUTB(DM(l),2)
CALL IOUTB(DM(2),2)
CALL IOUTB(DM(3),3)
CALL IOUTB(DM(4),3)
CALL IOUTB(DM(S),#0083)
I=l
CALL IOUTB(I,10)
RETURN
END

182

C
C COLLECT ONE CHANNEL OF A/D
C

SUBROUTINE A2DONE(ICHAN,IGAIN,FREQ,N,AV,VNSE)

$INCLUDE:'BUFCOM'
$INCLUDE:'IOPARMS'

INTEGER*2 I(2),J(2),L(2),K(2),AD(5),DM(5)
INTEGER*4 II,KK,JJ,LL,INDEX
EQUIVALENCE (II,I), (JJ,J), (LL,L), (KK,K)
Ll=#00FF
M=8
CALL PHYSAD(IBUF(l),JJ)
II=N*2
LL=JJ+II
IF (J(2) .EQ. 1(2)) THEN

KK=JJ
INDEX=l

ELSE
K (2) =L (2)
K (1) =0
INDEX=(KK-JJ)/2+1

ENDIF
II=II-1
DM(l)=IAND(K(l),Ll)
DM(2)=ISHFTR(K(l),M)
DM(3)=IAND(I(l),Ll)
DM(4)=ISHFTR(I(~),M)
DM(S)=K(2)
AD (1) =I GAIN
AD(2)=ICHAN
AD(3)=ICHAN
AD(4)=10
AD(S)=0
CALL DTCLOCK(FREQ)
CALL SETDMA(DM)
CALL SETAD(AD)
Ll=IOR(CRAD,CDMA)
CALL PWAIT(DTSTAT,CWAIT,0)
CALL IOUTB(Ll,DTCOM)
CALL PWAIT(DTSTAT,CWAIT,0)
M=INPB (DTSTAT)
M=IAND (M, #0080)
IF (M .NE. 0)STOP 'A/D ERROR'

C CALCULATE AVERAGE MAX AND MIN
II=0
MIN=IBUF (INDEX)
MAX=MIN
DO 100 M=0,N-1
II=II+IBUF(INDEX+M)
IF (IBUF(INDEX+M) .LT. MIN)MIN=IBUF(INDEX+M)
IF (IBUF(INDEX+M) .GT. MAX)MAX=IBUF(INDEX+M)

100 CONTINUE
R=10.0/2**IGAIN
RR=R*2.0/4096
AV= (II/N)

l!J3

AV=AV*RR
AV=AV-R

C CALCULATE RMS NOISE
DT=l.0/FREQ
T=N*DT
VSQ=0.0
DO 200 M=0,N-1
VSQ=VSQ+(IBUF(INDEX+M)*RR-R-AV)**2*DT

200 CONTINUE

$PAGE

VNSE=SQRT(l/T*VSQ)
RETURN
END

184

C
C RESTORE ANALOG
C

SUBROUTINE RESTOR

$INCLUDE:'SETCOM'
$INCLUDE:'IOPARMS'

CALL IOUTB(DASOFF,CNTRL)
CALL IOUTB(SHOFF,CNTRL)
DO 100 I=0,15
J=I+l

100 CALL ZOFF(I,IOFFS(J))
RETURN
END

$PAGE

185

C
C SET FILTER CLOCK
C

SUBROUTINE FILCLK(F)

INTEGER*2 C(2),HIGH
INTEGER*4 COUNT
EQUIVALENCE (COUNT,C)

$INCLUDE:'IOPARMS'
COUNT=l.193182E6/100.0/F

C DISARM COUNTER
CALL IOUTB(#D0,TIMERC)

C LOAD COUNTER
CALL IOUTB(#0D,TIMERC)
LOW=IAND(#00FF,C(l))
HIGH=ISHFTR(C(l),8)
CALL IOUTB(LOW,TIMERD)
CALL IOUTB(HIGH,TIMERD)

C START COUNTER 5

$PAGE

CALL IOUTB(#70,TIMERC)
RETURN
END

186

C
C INITIALIZE I/O
C

SUBROUTINE INITIO

$INCLUDE:'IOPARMS'
C SET UP 8255 CHIP

CALL IOUTB(#90,CNTRL)
C SET UP ANALOG CONTROL LINES

CALL IOUTB(0,IPC)

C

C

C

C

CALL IOUT~(DASOFF,CNTRL)
CALL RESTOR

SET UP TIMER CHIP MASTER MODE
CALL IOUTB(#0FF,TIMERC)
CALL IOUTB(#5F,TIMERC)
CALL IOUTB(#DF,TIMERC)
CALL IOUTB(#E8,TIMERC)
CALL IOUTB(#17,TIMERC)
CALL IOUTB(#D0,TIMERD)
CALL IOUTB(#49,TIMERD)

SET UP COUNTER 5
CALL IOUTB(l,TIMERC)
CALL IOUTB(#21,TIMERD)
CALL IOUTB(2,TIMERD)
CALL IOUTB (9, TIMERC)
CALL IOUTB (4, TIMERD)
CALL IOUTB(0,TIMERD)

SET UP COUNTER 5(FILTER CLOCK)
CALL IOUTB(5,TIMERC)
CALL IOUTB(#22,TIMERD)
CALL IOUTB(#0B,TIMERD)
CALL IOUTB(#0D,TIMERC)
CALL IOUTB(l19,TIMERD)
CALL IOUTB(0,TIMERD)

ST~T COUNTER 5
CALL IOUTB(#70,TIMERC)
RETURN
END

187

LOADTAPE.FOR

$STORAGE:2
$NOFLOATCALLS

SUBROUTINE LOADT

$INCLUDE:'BUFCOM'
$INCLUDE: 'STATCOM'
$INCLUDE:'SETCOM'

INTEGER*2 ISTAT
LOGICAL IEXIST
CHARACTER*l6 FN
CALL CLRSCR

CALL SETCUR(0,0)

C IS A TAPE ALREADY LOADED?
IF(TINIT .EQ. l)THEN
WRITE(*,' (A\)') 'A TAPE IS ALREADY LOADED'
GOTO 1000
ENDIF

C MAKE SURE TAPE IS READY
WRITE(*,' (A\)') 'IS THE TAPE READY?'
I=0

10 CALL YESNO(I,0,18,IRET)
IF(I .EQ. 0) GOTO 10
CALL SETCUR(l,0)

C CHECK DRIVE D FOR NAME.VOL
FN='D:NAME.VOL 1

INQUIRE(FILE=FN,EXIST=IEXIST)
IF (I .NE. 0) THEN C

C
C
C

WRITE(*,' (A\)') 'ERROR READING DRIVE D'
GOTO 1000
ENDIF
CALL SETCUR(l,0)
IF(IEXIST)THEN

C READ IN VOLUME INFORMATION
OPEN(9,FILE=FN)
READ (9, 8000) TVOL, (IBUF (I) , I=l, 100)

8000 FORMAT(A56,100I7)
CLOSE (9)
TFILE=LFILE
WRITE(*,9000)TNAME,TCDATE,TCTIME

9000 FORMAT('TAPE NAME IS ',AS,' CREATED ',A8,1X,A8\)
CALL SETCUR(3,0)
WRITE(*,9010)LFILE,TLDATE,TLTIME

9010 FORMAT('LAST FILE IS ',A16,' CREATED ',A8,1X,A8\)
ELSE

C NEW TAPE GET NAME AND CREATE NAME.VOL

TNAME='

188.

WRITE(*, I (A\)') 'NEW TAPE--INPUT NAME I

CALL GETSTR(TNAME,8,1,21,IRET)
OPEN(9,FILE=FN,STATUS-'NEW')

C GET DATE AND TIME
CALL GDATE(I,J,K)
I=I-1900
WRITE(TCDATE,9020)J,K,I

9020 FORMAT(I2, '-',I2, '-',I2)
TLDATE=TCDATE
CALL GTIME(I,J,K)
WRITE(TCTIME,9030)I,J,K

9030 FORMAT (I2, ': ', I2, ': ', I2)
TLTIME=TCTIME
LFILE•'D:NEWFILE.DTA
TFILE=LFILE
WRITE (9, 8000) TVOL, (IBUF (I), I=l, 100)
CLOSE (9)

ENDIF
TINIT•l

C FLUSH BUFFERS AND EXIT
CALL TAPE(3 1 4,ISTAT)

1000 CALL WAITKY
RETURN
END

189

LOGO.FOR

$STORAGE:2
$NOFLOATCALLS
C
C SUBROUTINE LOGO- DRAWS OPENING LOGO USING FILE "LOGO"
C

SUBROUTINE LOGO

CHARACTER*80 STRl
CHARACTER*l3 F
F='/HALO107.FNT/'
CALL INITGR
CALL SETIEEE (1)
CALL SETFONT(F)
CALL SETWORLD(0.,0.,1000.,100O.)

CALL SETLNW(3)
CALL BOX(S.,5.,995.,995.)
CALL PTABS (30.,360.)
CALL LNABS (970.,360.)
CALL PTABS (30.,122.)
CALL LNABS (970.,122.)

OPEN (9,FILE='LOGO')
READ (9,' (I2) ') NSTR
DO 10 I= 1,NSTR

READ (9,' (I4,3F9.2,A) ')LW,HT,X,Y,STRl
CALL SETLNW(LW)
CALL MOVTCA (X,Y)
CALL SETSTEXT (HT,1.,0)
CALL STEXT (STRl)

10 CONTINUE

CALL DELTCUR
CALL KCLEAR

20 J=IGKEY()
IF (J .EQ. 80 .OR. J .EQ. 112) THEN

CALL SETGPR(l)
CALL GPRINT
GO TO 20

END IF
IF(J .EQ. 0)GOTO 20
CALL CLOSEGR
RETURN
END

190

LOPASS.FOR

$TITLE:'SUBROUTINE LOPASS'
$NOFLOATCALLS
$STORAGE:2
**

SUBROUTINE LOPASS (ARRAY, NCH, NS, MOVAVl, MOVAV2)
**
* This subroutine filters a signal with a lo-pass filter.

* <-> ARRAY real*4
*

2-D Input array. Channel 1 is filtered.
The data should start at position 2 and
continue to NS+ 1. *

*
*
*
*
*
*
*
*

-->
-->
-->
-->

NCH
NS
MOVAVl
MOVAV2

integer*4
integer*4
integer*4
integer*4

The output starts in position 1, and
corresponds to what used to be the MOVAVl-th
point. (The array gets shifted.)
1st dimension of ARRAY. (t of channels.)
no. of samples in ARRAY.
no. of points in moving average,
no. of points to center of moving average
(MOVAVl / 2),

**
$LARGE: ARRAY

*

INTEGER*4 MOVAVl, MOVAV2, NCH, NS, I, Il, I2, Ml, M2, N
REAL*4 ARRAY (*), SCMl

* Initialize moving average.

ARRAY (1) = 0
Il = 1
DO 40 I=l, MOVAVl

Il = Il + NCH
ARRAY (1) = ARRAY (1) + ARRAY (Il)

40 CONTINUE
ARRAY (1) = ARRAY (1) / MOVAVl

* Filter signal.
*

*

I1 = 1
I2 = I1 + NCH
SCMl = 1. I MOVAVl
Ml MOVAVl * NCH
M2 MOVAV2 * NCH

DO 50 I= 2, NS
ARRAY (I2) ARRAY (Ill + SCMl * (ARRAY (I2 + Ml) -

& ARRAY (I2))
Il = I2
I2 = I2 + NCH

50 CONTINUE
RETURN
END

191

C
C ROAD MEASUREMENT SUBROUTINE
C

MEASURE.FOR

$TITLE: 'MEASURE'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE MEASURE

$INCLUDE:'STATCOM'
CHARACTER*32 IMENU(8)
INTEGER*2 MA(8)
MI=8
DO 10 I=l,MI

10 MA(I)=l

IMENU(l)='MAKE ROAD MEASUREMENTS'
IMENU(2)='SELECT CONFIGURATION'
IMENU(3)='DO ELECTRICAL CALIBRATION'
IMENU(4)='DO BOUNCE TEST'
IMENU(5)='CHECK PULSER'
IMENU(6)='MEASURE ROAD'
IMENU(7)='PROCESS DATA'
IMENU(8)='EXIT TO MAIN MENU'

C SET DEFAULT TO MEASURE ROAD

C GET SELECTION
50 IF(CALYN .EQ. 0)THEN

C

100

C
200

C
300

IDEF=2
ELSEIF (BOUNYN .EQ. 0)THEN

IDEF=3
ELSEIF (PULYN .EQ.0)THEN

IDEF=4
ELSE

IDEF=~
ENDIF
CALL MENU(IMENU,MI,MA,IDEF,IRET)
CALL CLRSCR
GOTO (100,200,300,400,500,600,700)IRET

CONFIGURE SYSTEM

CALL CONFIGURE
GOTO 50

DO ELECTRICAL CAL
CALL CALIB
GOTO 50

DO BOUNCE TEST
CALL TEST(l)
BOUNYN=l
GOTO 50

192

C CHECK PULSER
400 CALL PULSE

PULYN=l
GOTO 50

C MEASURE ROAD

500 CALL TEST(O)
GOTO 50

C PROCESS DATA
600 CALL PROCESS

GOTO 50

C RETURN TO MAIN PROGRAM
700 RETURN

END

193

C MINV.FOR

NAASA
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

2.1.020 MINV FTN 06-24-75 THE UNIV OF MICH COMP CTR
Modified July 9, 1986 so that it will compile as Fortran 77.

SUBROUTINE MINV

PURPOSE
INVERT A MATRIX

USAGE
CALL MINV(A,N,D,L,M)

DESCRIPTION OF PARAMETERS
A - INPUT MATRIX, DESTROYED IN COMPUTATION AND REPLACED BY

RESULTANT INVERSE.
N - ORDER OF MATRIX A
D - RESULTANT DETERMINANT
L - WORK VECTOR OF LENGTH N
M - WORK VECTOR OF LENGTH N

REMARKS
MATRIX A MUST BE A GENERAL MATRIX

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
THE STANDARD GAUSS-JORDAN METHOD IS USED. THE DETERMINANT
IS ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT
THE MATRIX IS SINGULAR.

$STORAGE:2
$NOFLOATCALLS

C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C

SUBROUTINE MINV(A, N, D, L, M)

DIMENSION A(*), L(*), M(*)

IF A DOUBLE PRECISION VERSION OF THIS ROUTINE IS DESIRED, THE
C IN COLUMN 1 SHOULD BE REMOVED FROM THE DOUBLE PRECISION
STATEMENT WHICH FOLLOWS.

DOUBLE PRECISION A,D,BIGA,HOLD

THE C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS
ROUTINE.

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO
CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS. ABS IN STATEMENT
10 MUST BE CHANGED TO DABS.

194

C
C SEARCH FOR LARGEST ELEMENT
C

D = 1.0
NK = -N
DO 190 K = 1, N

NK = NK + N
L(K) = K
M(K) = K
KK-= NK + K
BIGA = A(KK)
DO 30 J =·K, N

IZ = N * (J - 1)
DO 30 I= K, N

IJ"' IZ + I
10 IF (ABS(BIGA) - ABS(A(IJ))) 20, 30, 30
20 BIGA A(IJ)

L(K) I
M(K) J

30 CONTINUE
C
C INTERCHANGE ROWS
C

C
C
C

C

40

50

60

70

BO

J = L(K)
IF (J - K) 60, 60, 40
KI= K - N
DO 50 I= 1, N

KI= KI+ N
HOLD = -A (KI)
JI= KI - K + J
A(KI) = A(JI)

A(JI) = HOLD

INTERCHANGE COLUMNS

I = M(K)
IF (I - K) 90, 90, 70
JP = N * (I - 1)
DO 80 J = 1, N

JK = NK + J
JI= JP+ J
HOLD= -A(JK)
A(JK) = A(JI)

A(JI) = HOLD

C
C

DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS
CONTAINED IN BIGA)

C
90

100

110

120

130
C
C

IF (BIGA) 110, 100, ll0
D = 0.0
RETURN
DO 130 I= 1, N

IF (I - K) 120, 130, 120
IK = NK + I
A(IK) = A(IK) / (-BIGA)

CONTINUE

REDUCE MATRIX

19!'i

C
DO 160 I= 1, N

IK = NK + I
HOLD A(IK)
IJ = I - N
DO 160 J = 1, N .. '

IJ IJ + N
IF (I - K) 140, 160, 140

140 IF (J - K) 150, 160, 150
150 KJ = IJ - I + K

A (IJ) = HOLD* A(KJ) + A (IJ)
160 CONTINUE

C
C DIVIDE ROW BY PIVOT
C

KJ = K - N
DO 180 J = 1, N

KJ=KJ+N
IF (J - K) 170, 180, 170

170 A(KJ) = A(KJ) I BIGA.
180 CONTINUE

C
C PRODUCT OF PIVOTS
C

D = D *.BIGA
C
C REPLACE PIVOT BY RECIPROCAL
C

A(KK) - LO / BIGA
190 CONTINUE

C
C FINAL ROW AND COLUMN INTERCHANGE
C

K = N
200 K = (K - 1)

IF (K) 270, 270, 210
210 I = L (K)

IF (I - K) 240, 240, 220
220 JQ = N * (K - 1)

JR = N * (I - 1)
DO 230 J = 1, N

JK = JQ + J
HOLD = A (JK)
JI= JR+ J
A(JK) = -A(JI)

230 A(JI) = HOLD
240 J = M(K)

IF (J - K) 200, 200, 250
250 KI= K - N

DO 260 I= 1, N
KI= KI+ N
HOLD = A(KI)
JI= KI - K + J
A(KI) = -A(JI)

260 A(JI) = HOLD
GO TO 200

270 RETURN
END

196

PLOT.FOR

$TITLE:'THE PLOT SUBROUTINE'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE PLOT(MODE,IACTIV,NCHAN,NPTS,ICH,IIS,ITOT,
& DX,XMIN,XMAX,XSTART,KCURS,YMIN,YMAX,NAME,UNITS,
& XNAME,XUNITS,GAIN,OFF,IUPDT, ISTART, NPTOT,
& NPMAX, TITLE)

**
*-->MODE
* <-> IACTIV
* --> NCHAN
* --> NPTS
* --> ICH
* --> IIS
* --> ITOT
*-->DX
* <-> XMIN
* <-> XMAX
* --> XSTART
* <-> KCURS
* <-> YMIN
* <-> YMAX
*-->NAME
*-->UNITS
* --> XNAME
* --> XUNITS
*-->GAIN
*-->OFF
* <-> IUPDT
*
*
* <-> ISTART
* --> NPTOT
* --> NPMAX
* --> FNAME

int*2
int*2
int*2
int*4
int*2
int*4
int*2
real*4
real*4
real*4
real*4
int*4
real*4
real*4
char*8
char*8
char*8
char*8
real*4
real*4
int*2

int*4
int*4
int*4
char*30

DATA TYPE 0=INTEGER l=FLOATING 'POINT
the active plot (1 or 2)
number of channels to be plotted (1 or 2).
number of points (per channel) to plot
array with id nos. of the channel(s) being plotted.
offset (in array) to first point to be plotted.
number of channels in buffer.
sample interval. (x axis gain)
minimum limit for x values.
maximum limit for x values.
value of x at start of file (i=0).
offset in file to cursor position (0=lst sample).
array of min y limits for all (ITOT) channels.
array of max y limits for all (ITOT) channels.
array of names of all channels.
array of names of units of all•of the channels.
name of variable plotted on the x axis.
name of units for variable plotted on the x axis.
array of channel gains used for integei data.
array of offsets of channels used for integer data.
0=don't redraw; l=rescale y axis on active plot;
2=both plots, 3=quit. The only values on exit
are 2 and 3.
offset (in file) to first point in plot array:
number of samples in file.
max number of points that can be plotted.
title for plots.

**
$INCLUDE: 'BUFCOM'

INTEGER*2 ICH(2)
DIMENSION YMIN(*),YMAX(*),XPUL(2),XPLR(2),YPUL(2),YPLR(2)
DIMENSION RDATA(65536),GAIN(2),OFF(2),YTUL(2),YTLR(2)
DIMENSION XYUL(2),YYUL(2),XYLR(2),YYLR(2),XTUL(2),XTLR(2)
DIMENSION XXUL(2),YXUL(2),XXLR(2),YXLR(2).
EQUIVALENCE (IBUF,RDATA)
INTEGER*4 J,KCURS,NPTS,ISTART,JJ,KK, IIS, NPTOT,NPMAX·
CHARACTER*lO S2(2),S4,STRING
CHARACTER*ll Sl(2) 1 S3
CHARACTER*8 UNITS(*),NAME(*),XUNITS,XNAME
CHARACTER*l2 S(2),SX(2)
CHARACTER*30 TITLE
CHARACTER*32 ST

C SET UP VIEWPORT COORDS FOR PLOTS

197

DO 10 I=l,2
XPUL(I)=.1
YPUL(I)=.005
XPLR(I)=.995
YPLR(I)=.88

C SET UP VIEWPORT COORDS FOR Y-AXES
XYUL(I)=0.
YYUL(I)=.005
XYLR(I)=.098
YYLR (I) = . 8 8

C SET UP VIEWPORT COORDS FOR X-AXES
XXUL(I)•.l
YXUL(I)=.90
XXLR(I)=.995
YXLR(I)=.93

C SET UP VIEWPORT COORDS FOR TEXT
XTUL(I)=.005
YTUL(I)=.95
XTLR(I)=.995
YTLR(I)=.985

10 CONTINUE

*

IF(NCHAN .EQ. 2) THEN
YPUL(2)=.545
YYUL(2)=.545
YPLR(l)=.38
YYLR(l)=.38
YPUL(l)=.045
YYUL(l)=.045
YXUL(l)=.40
YXLR(l) =. 43
YTUL (1) =. 45
YTLR(l)=.495

ENDIF

Set the title and x-axis Halo text strings

WRITE (ST,'("\",A30,"\")') TITLE
WRITE(S3,9010)XNAME
WRITE(S4,9020)XUNITS

9010 FORMAT('\',A8,':\')
9020 FORMAT('\',A8,'\')

* Loop to do 1 or 2 plots on screen.

IF (IUPDT .EQ. 0) GO TO 110
CALL SETLNW(l)

20 DO 100 I=l,NCHAN

* Skip a plot if it's not active and if IUPDT=l

IF (IUPDT .EQ. 1 .AND. I .NE. IACTIV) GO TO 100
ICHI = ICH (I)

* Determine tick spacing on x axis. Label it and put in fasttext ·

198

* unless IUPDT = l

TX=(XMAX-XMIN)/10.
CALL SCLUP(TX,T,XTICK)
CALL TIKSET (XMIN, XMAX, XTICK, XTMIN, XTMAX, NXTICK)

IF (IUPDT .NE. 1) THEN

WRITE(Sl(I),9010)NAME(ICHI)
WRITE(S2(I),9020)UNITS(ICHI)

CALL FTLOCATE (34*1/NCHAN, 2)
CALL FTEXT (ST)
CALL FTLOCATE (34*I/NCHAN,33)
CALL FTEXT(Sl(I))
CALL FTLOCATE (34*I/NCHAN,53)
CALL FTEXT(S2(I))
CALL FTLOCATE (34*!/NCHAN,63)
CALL FTEXT (53)
CALL FTLOCATE (34*I/NCHAN,83)
CALL FTEXT (S4)

SCLXLB = (XMAX - XMIN) / 2 / (90 * (XXLR (I) - XXUL (I)))
X = XXUL(I) - .07
CALL SETVIEW(X,YXUL(I),XXLR(I),YXLR(I),-1,0)
X = XMIN - .07 * (XMAX - XMIN) / (XXLR (I) - XXUL (I))
CALL SETWORLD(X,0.,XMAX,l.)
DO 30 K=0, NXTICK - 1

T=XTICK*K+XTMIN
IF (ABS (T) .LT .. 01 * XTICK) T 0
L ., 8

CALL LABEL (T, STRING, L)
T = T - L * SCLXLB

XMAX2 = XMAX - (2 * L + 1) * SCLXLB
IF (T .GT. XMAX2) T = XMAX2

CALL MOVTCA(T, 0)
CALL TEXT(STRING)

30 CONTINUE
END IF

* Determine tick spacing for they axis and label it.

TY=(YMAX(ICHI)-YMIN(ICHI))/10.*NCHAN
CALL SCLUP(TY,T,YTICK)
CALL TIKSET (YMIN(ICHI), YMAX(ICHI), YTICK, YTMIN,

& YTMAX, NYTICK)

CALL SETVIEW(XYUL(I),YYUL(I),XYLR(I),YYLR(I),-1,0)
CALL SETWORLD(0.,YMIN(ICHI),10.,YMAX(ICHI))

YLBOFF = (YMAX(ICHI) - YMIN(ICHI)) * NCHAN / 60
DO 40 K = 0, NYTICK - 1

T=YTICK * K + YTMIN
IF (ABS (T) .LT .. 01 * YTICK) T = 0
L = 8
CALL LABEL(T,STRING,L)
X 9 - L
T = T - YLBOFF

199

CALL MOVTCA (X, T)
CALL TEXT(STRING)

40 CONTINUE

* Open the viewpott for the data, and draw the grids.

CALL SETVIEW (XTUL(I), YYUL(I), XTLR(Il, YTLR(I), 1, -1)
CALL SETVIEW(XPUL(I),YPUL(I),XPLR(I),YPLR(I),1,0)
CALL SETWORLD(XMIN,YMIN(ICHI),XMAX,YMAX(ICHI))
CALL SETLNST(2)

DO 50 Km 0, NXTICK - 1
T=XTICK*K+XTMIN
IF (T .NE, XMIN .AND. T .NE. XMAX) THEN

CALL MOVABS (T, YMIN (ICHI))
CALL LNABS(T,YMAX(ICHI))

END IF
50 CONTINUE

DO 60 K-0, NYTICK - l
T=YTICK * K + YTMIN
IF (T .NE. YMIN(ICHI) .AND. T .NE. YMAX(ICHI)) THEN

CALL MOVABS(XMIN,T)
CALL LNABS(XMAX,T)

END IF
60 CONTINUE

* Now plot the data.

CALL SETLNST (1)
KK=IIS
IF (MODE .EQ. 0)THEN

YmFLOAT(IBUF(KK+ICHI))*GAIN(ICHI)-OFF(ICHI)
ELSE

Y=RDATA (KK+ICHI)
ENDIF '
CALL PTABS(lCMIN,Y)

* Plot'm.up.

DO 70 J=0,NPTS-1
X=DX*J+XMIN
IF (MODE .EQ. 0)THEN . . .

Y=FLOAT(IBUF(KK+ICHI))*GAIN(ICHI)-OFF(ICHI)
ELSE

YcRDATA(KK+ICHI)
ENDIF
KK=KK+ITOTi

10 cALL LNABs <"x>t,
100 CONTINUE
110 CONTINUE

* Update cursor coordinates ..

200 JJ=(KCURS--ISTAR.T)*ITOT+IIS
X (KCURS-ISTART) *· DX + XMI~ .
I = IACTIV ..

200

!CHI= ICH(I)
IF (MODE ,EQ. 0)THEN

Y=FLOAT(IBUF(JJ+ICHI))*GAIN(ICHI)-OFF(ICHI)
ELSE

Y=RDATA(JJ+ICHI)
ENDIF .

* Write cursor position.·

WRITE(S(I),9000)Y
9000 FORMAT('\',Fl0.4,'\')

CALL FTLOCATE (34*!/NCHAN, 42)
CALL FTEXT(S(I))
CALL FTLOCATE (34*!/NCHAN, 72)
WRITE(SX(I),9000)X
CALL FTEXT(SX(I))

* Re-draw the cursor.

CALL SETVIEW(XPUL(I),YPUL(I),XPLR(I),YPLR(I),-1,;..1)
CALL SETWORLD (XMIN, YMIN (ICHI) , XMAX~ YMAX (ICHI))
CURX=50.*(XMAX-XMIN)/720.
CURY=50. *NCHAN* (YMAX(ICHI)-YMIN(ICHI)) /348.'
CALL INITHC(CURY,CURX,1)
CALL MOVHCA(X,Y)

* Get next cursor position.

CALL GRCURS (!START, IACTIV, KCURS, NPTS, NCHAN, NPTOT,
& NPMAX, IUPDT, XMIN, XMAX, XSTART, DX,. YMIN, YMAX, ICH)

IF (IUPDT .EQ. 1) GO TO' 20
IF(IUPDT .EQ. 0) GOTO 200
RETURN
END

21)1

PLOTELV.FOR

$TITLE:'SUBROUTINE PLTELV'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE PLTELV (HANDLE, QNDPLT)

* --> HANDLE int*2 handle to data file.
* --> QNDPLT log .true. if its a quick and dirty plot.

$INCLUDE:'BUFCOM'
$INCLUDE:'SETCOM'
$INCLUDE:'STATCOM'
$INCLUDE:'HANDLES'

*

INTEGER*2 IOF(2),ICHAN(2),IPTR(8), MA(lS)
CHARACTER*l DR
CHARACTER*3 EXT
CHARACTER*8 N(8),U(8),XNAME,XUNITS, FN,STRl
CHARACTER*30 TITLE
CHARACTER*32 IMENU (15), BSTITL
CHARACTER*G0 BSPRMT
LOGICAL QNDPLT
REAL*4 YMIN(8),YMAX(8),YRANGE(8), YMXRNG (8),BASES (12)
INTEGER*4 NPTS,ISTART,NPMAX,II,JJ,MBYTES,IP,IO,LBYTES,IIS,

& KCURS,NPTOT,MOVAVl, MOVAV2

DATA BSTITL /'BASELENGTH TO REMOVE LONG WAVES'/
DATA BSPRMT /'BASELENGTH:'/

XNAME=CH ID (10)
XUNITS=UNITS(lO)
MAXBUF = MXBFSZ

Set sample interval and number of points

IF (QNDPLT) THEN
NPTOT = NSRTOT
DX= DXTRIM

ELSE
NPTOT = NSPTOT
DX= DELTAX

END IF

* Get baselength for moving average.

IF (TSTTYP .EQ. 2) THEN
CALL GETLEN (FLTBAS, DX* 5., LNGWAV * 4., XUNITS, BSTITL,

& BSPRMT, IRET)
IF (IRET .EQ. 1) RETURN

MOVAVl FLTBAS I DX+ 1
MOVAV2 = MOVAVl I 2 + 1

ELSE
MOVAVl 0
MOVAV2 0

END IF

202

* Set limits and constants derived from the baselength.

NPMAX = MAXBUF / NCHPRF - MOVAVl - TRIM
IF (NPMAX .GT. NPTOT + 1) NPMAX = NPTOT + 1

* Create title to pass to PLOT.

CALL FNMAKE (DR, FN, EXT, PFILE, 1)
TITLE= DR
TITLE(2:2) = ':'
TITLE(3:) = FN
TITLE(l3:) = 'FLT. BASE '
L = 8
CALL STRX (FLTBAS, STRl, L)
TITLE (23:) = STRl(:L)
IF (TSTTYP .EQ. 6) TITLE (13:) ~ 'BOUNCE'

C PUT CHANNEL INFO INTO ARRAYS FOR PLTSEL CALL

IF (LPROF)
N(ILPRF)
U(ILPRF)

END IF

IF (RPROF)
N(IRPRF)
U (IRPRF)

END IF

THEN
'L. ELEV'

= UNITS (1)

THEN
= 'R. ELEV'
= UNITS (1)

N (3) = 'PROFILES'

* Set up default values for PLTSEL

NCH= NCHPRF
DO 15 I= 1, NCH

YMXRNG (I) ~ FLTBAS * .1
IF (TSTTYP .EQ. 6) YMXRNG (I) = 2048 * GAIN (1)

15 CALL SCLUP (YMXRNG(I),Xl,YMXRNG(I))

IOF (1) = 1
IOF (2) = 2
IF (XRANGE .LE. 5. * DX) XRANGE = 5. * DX
IF (XRANGE .GT. DX* NPTOT) XRANGE =DX* NPTOT
KCURS = XCURS / DX

C SELECT CHANNEL(S) AND SCALE

CALL PLTSEL(NCH, N, U, XNAME, XUNITS, DX, XMIN, 0.,
& XRANGE, YRANGE, YMXRNG, NPTS, NPMAX, NPTOT,
& KCURS,IOF)

IF(IOF (1) .EQ. 0 .AND. IOF (2) .EQ. 0) RETURN
NCH= 1
IF (IOF (2) .NE. 0) NCH = 2
XCURS = KCURS * DX

C SET UP HALO

2.03

CALL INITGR
CALL SETIEEE(l)
CALL FTSIZE (1,10)
CALL FTCOLOR (1,0)
CALL FTINIT

DO 19 I=l,NCH
J = IOF(I)
YMAX (J) = YRANGE (J}
YMIN (J) = -YRANGE (J}

19 CONTINUE
XMAX = XMIN + XRANGE

NCHTOT = NCHPRF
IACTIV = 1
IUPDT = 2

20 ISTART=XMIN/DX
IF(NPTS .GT. NPTOT-ISTART) NPTS=NPTOT-ISTART
IIS = 0

C READ IN DATA

100 CALL GETELV (!START, NPTS, MOVAVl, MOVAV2, QNDPLT, HANDL~,
& !ERR)

C PLOT
CALL PLOT (1,IACTIV,NCH,NPTS,IOF,IIS,NCHTOT,DX,XMIN,XMAx,0.,

& KCURS,YMIN,YMAX,N,U,XNAME,XUNITS,G,O,IUPDT,ISTART,NPTOT,
& NPMAX,TITLE)

IF(IUPDT .EQ. 3)THEN
XCURS = KCURS * DX
XRANGE = XMAX - XMIN
CALL CLOSEGR
RETURN

END IF

GOTO 20
END

204

PLOTRAW.FOR

$TITLE:'RAW DATA PLOT'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE PLTRAW (HANDLE)
**
$INCLUDE:'BUFCOM'
$INCLUDE: 1 SETCOM 1

$INCLUDE:'STATCOM'
$INCLUDE:'HANDLES 1

INTEGER*2 IOF(2),ICHAN(2),IPTR(8)
CHARACTER*l DR
CHARACTER*3 EXT
CHARACTER*8 N(8),U(S);XNAME,XUNITS, FN
CHARACTER*30 TITLE
REAL*4 YMIN(8),YMAX(8),G(8),O(8), YRANGE(B), YMXRNG (8)
INTEGER*4 NPTS,ISTART,NPMAX,II,JJ,MBYTES1IP,IO,LBYTES,IIS,

& KCURS,NPTOT
CALL CLRSCR

NPMAX=MXBFSZ * 2 / NCHRAW
NPTOT = PASSA
IF (NPMAX .GT. NPTOT) NPMAX = NPTOT.
CALL FNMAKE (DR, FN, EXT, PFILE, 1)
TITLE= 'RAW DATA FROM FILE: ·•
TITLE(21:21) • DR
TITLE (23:) ~ FN

C GET XUNITS,XNAME,AND DELTAX
IF(IDMODE .EQ. #0B2l)THEN

C TIME BASED SAMPLING
XNAME='TIME'
XUNITS='SECONDS'
DELTAX=IDIV*.4190477E-6

ELSE
C DISTANCE BASED SAMPLING

XNAME=CHID (10)
XUNITS=UNITS(l0)

ENDIF

C PUT CHANNEL INFO INTO ARRAYS FOR PLTSEL CALL
L=ADSTRT
DO 10 I=l,NCHAN

M"'L+l
N (I) =CHIO (M)
U (I l =UNITS (Ml
YMXRNG (I) = ABS(GAIN(M)) * 2048.
CALL SCLUP (YMXRNG (I),Xl, YMXRNG(I))
IPTR(I)=M
L=L+l
IF(L .GT. 7)1=0

10 CONTINUE

205

* Set up default values for PLTSEL

IOF (1) = 1
IOF (2) = 2
IF (XRANGE .GT. DELTAX * PASSA) XRANGE a 10.
KCURS = XCURS / DELTAX
IF (KCURS .LT. 0 .OR. KCURS .GT. PASSA) KCURS 1

C SELECT CHANNEL(S) AND SCALE

11 CALL CLRSCR
CALL PLTSEL(NCHAN, N, U, XNAME, XUNITS, DELTAX, XMIN,0.,

& XRANGE,YRANGE, YMXRNG, NPTS, NPMAX, NSAMP,KCURS,IOF)

IF(IOF (1) .EQ. 0 .AND. IOF (2) .EQ. 0) RETURN
NCH= 1
IF (IOF (2) .NE. 0) NCH= 2
XCURS = KCURS * DELTAX

C SET UP HALO
CALL INITGR
CALL SETIEEE(l)
CALL FTSIZE (1,10)
CALL FTCOLOR (1,0)
CALL FTINIT

DO 15 I=l,NCH
J = IOF (I)
G(J)=GAIN(IPTR(J))
O(J)=ZDATA(IPTR(J))
YMAX (J) = YRANGE (J)
YMIN (J) = - YRANGE (J)
IF (J .EQ. ICHV) YMIN (J) 0

15 CONTINUE
XMAX = XMIN + XRANGE

IACTIV = 1
IUPDT = 2

20 ISTART=XMIN/DELTAX
IF(NPTS .GT. NPTOT-ISTART) NPTS=NPTOT-ISTART
IIS = 0

C READ IN DATA

100 OFFSET=ISTART*2*NCHAN
BYTES=NPTS*2*NCHAN
CALL RDTAPE(HANDLE,IBUF,OFFSET,BYTES,IER)

C PLOT
CALL PLOT (0,IACTIV,NCH,NPTS,IOF,IIS,NCHAN,DELTAX,XMIN,XMAX,

& 0.,KCURS,YMIN,YMAX,N,U,XNAME,XUNITS,G,O,IUPDT,ISTART,
& NPTOT,NPMAX,TITLE)

IF(IUPDT .EQ. 3)THEN
XCURS = KCURS * DELTAX
XRANGE = XMAX - XMIN
CALL CLOSEGR
RETURN

206

END IF

GOTO 20
END

207

PLOTRUT.FOR

$TITLE:'SUBROUTINE PLTRUT'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE PL'l'RtJT (HANDLE)

********************************••································· * --> HANDLE int*2 handle to data file.

$INCLUDE:'BUFCOM'
$INCLUDE:'SETCOM'
$INCLUDE:'STATCOM 1

*

INTEGER*2 IOF(2),ICHAN(2),IPTR(8), MA(lS),HANDLE
CHARACTER*l DR
CHARACTER*3 EXT.
CHARACTER*8 N(B) ,U(8) ,XNAME,XUNITS, FN,STRl y
CHARACTER*30 TITLE
CHARACTER*32 !MENU (15), BSTITL
CHARACTER*60 BSPRMT
REAL*4 YMIN(8),YMAX(8),YRANGE(8), YMXRNG (8),BASES (12)
INTEGER*4 NPTS,ISTART,NPMAX,II,JJ,MBYTES,IP,IO,LBYTES,IIS,

& KCURS,NPTOT,MOVAVl, MOVAV2,NSMP

DATA BSTITL /'AVERAGE OVER BASELENGTH ... '/
DATA BSPRMT /'AVERAGE OVER BASELENGTH: '/

XNAME=CHID (l O)
XUNITS=UNITS (10)
MAXBUF = MXBFSZ

Get baselength for moving average.

IF (TSTTYP .EQ. 2) THEN
MAXBS = MAXBUF / NCHRUT - NCHRUT
IF (MAXBS .GT. NSRTOT) MAXBS • NSRTOT
CALL GETLEN (AVEBAS, DXTRIM, MAXBS * DXTRIM, XUNITS, BSTITL,

& BSPRMT, IRET)
IF (IRET .EQ. 1) RETURN

MOVAVl AVEBAS / DXTRIM + l
MOVAV2 = MOVAVl / 2 + l

ELSE
MOVAVl = 0
MOVAV2 = 0

END IF

* Set limits and constants derived from the baselength.

NPMAX = MAXBUF / NCHRUT - NCHRUT * MOVAVl - NCHRUT
IF (NPMAX .GT. NSRTOT - MOVAVl) NPMAX • NSRTOT - MOVAVl
XSTART = MOVAV2 * DXTRIM
NPTOT = NSRTOT - MOVAVl

* Create title to pass to PLOT.

208

CALL FNMAKE (DR, FN, EXT, PFILE, 1)
TITLE= DR
TITLE(2:2) = ':'
TITLE(3:) = FN
TITLE(l3:) ='AVE.BASE '
L • 8
CALL STRX (AVEBAS, STRl, L)
TITLE (23:) • STRl(:L)
IF (TSTTYP .EQ. 6) TITLE (13:) = 'BOUNCE'

C PUT CHANNEL INFO INTO ARRAYS FOR PLTSEL CALL

IF (LPROF) THEN
N(ILIRI) = 'L. IRI'
U(ILIRIJ = UNITS-(11)
YMXRNG(ILIRI) = .03 * SCLFRI * SCLFDX / SCLFH
IF (TSTTYP .EQ. 6) YMXRNG(ILIRI) = .25 / SCLFH

END IF

IF (RPROF) THEN
N(IRIRI) = 'R. IRI'
U(IRIRIJ. = UNITS(ll)
YMXRNG(IRIRI) • .03 * SCLFRI * SCtFDX / SCLFH
IF (TSTTYP .EQ. 6) YMXRNG(IRIRI) = .25 / SCLFH

END IF

IF (RRUT) THEN
N(IRR) = 'R. RUT'
U(IRRJ = UNITS(l)
YMXRNG(IRR) = 2048. * GAIN (1)

END IF

IF (CRUT) THEN
N(ICR) = 'C. RUT'
U(ICR) = UNITS(l)
YMXRNG(ICR) = 2048. * GAIN (1)

END IF

IF (LRUT) THEN
N(ILR) = 'L. RUT'
U(ILR) = UNITS(l)
YMXRNG(ILR) = 2048. * GAIN (5)

END IF

IF (ICHV .NE. 0) THEN
N(IVEL) = 'SPEED'
U(IVEL) = UNITS(3)
YMXRNG(IVEL) • 2048. * GAIN (3)

END IF

DO 5 II= 1, NCHRUT
YRANGE (II) =YMXRNG (II J * . 2.
CALL SCLUP (YMXRNG(II),Xl,YMXRNG(II))
CALL SCLUP (YRANGE(II),Xl,YRANGE(II))

5 CONTINUE

* Set up default values for PLTSEL

209

NCH=- NCHRUT

IOF (1) = 1
IOF (2) = 2
IF (XRANGE .LE. O .• OR. XRANGE .GT. DXTRIM * NSRTOT) XRANGE = 10.
KCURS = (XCURS - XSTART) / DXTRIM

C SELECT CHANNEL(S) AND SCALE

CALL PLTSEL(NCH, N, U, XNAME, lCUNITS, DXTRIM, XMIN, XSTART,
& XRANGE, YRANGE, YMXRNG, NPTS, NPMAX, NPTOT,
& KCURS,IOF)

IF (IOF (1) .EQ. 0 .AND. IOF (2) .EQ. 0) RETURN
NCH= 1
IF (IOF (2) .NE. 0) NCH= 2
XCURS = KCURS * DXTRIM + XSTART

C SET UP HALO
CALL INITGR
CALL SETIEEE(l)
CALL FTSIZE (1,10)
CALL FTCOLOR (1,0)
CALL FTINIT

DO 19 I=l,NCH
J = IOF (I)
YMAX (J) = YRANGE (J)
YMIN (J) = -YRANGE (J)
IF (J .EQ. IVEL .OR. J .EQ. ILIRI .OR. J .EQ. IRIRI)

& YMIN (J) • 0.
19 CONTINUE

XMAX = XMIN + XRANGE

NCHTOT = NCHRUT
IACTIV = 1
IUPDT = 2

20 ISTART=(XMIN - XSTART) / DXTRIM
IF(NPTS .GT. NPTOT-ISTART) NPTS=NPTOT-ISTART
IIS = 0

C READ IN DATA

NSMP • NPTS + MOVAVl
CALL RDTAPD (HANDLE, PCBUFR, 2, ISTART, NSMP, IERR)

IF (TSTTYP .EQ. 2) THEN
DO 40 ICH = 1, NCH

J = IOF (ICH)
JJ = J
IF (J .EQ. ILIRI .OR. J .EQ. IRIRI) THEN

Ml= MOVAVl * NCHRUT
SCLF = SCLFRI / (MOVAVl * DXTRIM)
DO 30 II= JJ, NCHRUT* NSMP + JJ, NCHRUT

30 PCBUFR (II) = (PCBUFR (II+ Ml) - PCBUFR (II+
& NCHRUT)) * SCLF

ELSE

210

CALL LOPASS (PCBUFR (J), NCHRUT, NSMP, MOVAVl, MOVAV2)
END IF

40 CONTINUE
END IF

C PLOT
CALL PLOT (1, IACTIV ,NCH,NPTS, IOF, IIS,NCHTOT ,DXTRIM, XMIN; XMAX,

& XSTART,KCURS,YMIN,YMAX,N,U,XNAME,XUNITS,G,O,IUPDT,
& ISTART,NPTOT,NPMAX,TITLE)

IF(IUPDT .EQ. 3)THEN
XCURS = K9URS * DXTRIM + XSTART
XRANGE • XMAX - XMIN
CALL CLOSEGR
RETURN

END IF

GOTO 20
END

211

PLOTSEL.FOR

$TITLE:'PLTSEL SUBROUTINE'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE PLTS&:L (NCHAN, NAME, UNITS, XNAME, XUNITS, DX,
& XMIN, XSTART, XRANGE, YRANGE, YMXRNG, NPTS,
& NPMAX, NPTOT, KCURS, ICH)

* Get plot settings from user.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

--> NCHAN
--> NAME
--> UNITS
--> XNAME
--> XUNITS
--> DX
<-> XMIN
--> XSTART
<-> XRANGE
<-> YRANGE
--> YMXRNG
<-- NPTS
--> NPMAX
--> NPTOT
<-> KCURS
<-> ICH

int*2
char*S
char*S
char*S
char*S
real*4
real*4
real*4
real*4
real*4
rea·l*4
int*4
int*4
int*4
int*4
int*2.

number of channels.
array with names of each channel.
array with units.for each channel.
name of variable plotted on x axis. (time, etc.)
name of units for x'axis.
sample interval.
minimum limit of plotting range.
x value at start of file (i=O).
plotting range for ·x axis.
array with plotting ranges for y axis.
array with max allowable range for each channel.
number of points to plot.
maximum number of points that ·can be plotted.
maximum number of points in file.
position of cursor in file (O=lst point).

·array containing. the 2 channels to be plotted.

INTEGER*4 NPTS,NPMAX,NPTOT,KCURS
INTEGER*2 ICH(*), MA(12)
CHARACTER*B NAME(*),UNITS(*),XUNITS,XNAME,STR1,STR2
CHARACTER*32 IM(12),S(2),MENXR,MENSCL
CHARACTER*60 PRMXR,PRMSCL
REAL YRANGE (*),YMXRNG (*)

DATA MENXR/'SELECT RANGE FOR X-AXIS'/
DATA PRMXR/'RANGE OF X-AXIS COVERED IN ONE PLOT:'/
DATA PRMSCL/'FULL SCALE:'/
DATA MA/12*1/

C GET X-AXIS RANGE.

Xl = 10 * DX
CALL SCLUP (Xl, X, XLL)
Xl = NPMAX * DX
IF (NPMAX .GT. NPTOT) Xl =-NPTOT * DX
CALL SCLUP (Xl, X, XUL)
CALL GETLEN (XRANGE, XLL, XUL, XUNITS; MENXR, PRMXR, IRET)
IF (IRET .EQ. 1) THEN

ICH (1) 0
ICH (2) = 0
RETURN

END IF

NPTS = XRANGE /DX+ 2

212

* Set initial cursor position (and ~he XMIN needed to include it).

CALL CLRSCR
L = 8
CALL STRX (XSTART, STRl, L)
L2 .. 8
XUL = (NPTOT - 1) *DX+ XSTART
CALL STRX (XUL,STR2,L2)

CALL SETCUR (9, 0)
WRITE(*, 1 (A,A,A,A,·A,A\) ')

& 'THE PLOT CURSOR CAN BE $ET MriWHERE FROM ',STRl(:L), I TO I

& STR2(:L2),' ',XUNITS

CALL SETCUR(l0,0)
WRITE(*,' (A,A,A\) ') 'SET IT TO ',XNAME,' '· •'

XCURS = KCURS *DX+ XSTART
IF (XCURS .LE. XSTART) XCURS • XSTART + DX
IF (XCURS .GE. XUL) XCURS • XUL - DX

CALL GETR(XCURS,XSTART, XUL ,10,22,9,' (F9.3\) ',IRET)
XMIN • AINT (XCURS * 2 / XRANGE). * XRANGE * . 5
IF (XCURS - XMIN .LT. XRANGE * .. 25) XMIN • XMIN - XRANGE'* .5
IF (XMIN .LT. XSTART) XMIN ~ XSTART + DX
KCURS • (XCURS - XSTART) / OX .

* Select channels to plot.
* If there is just one channel, ~on't bother the user.·

IF (NCHAN .EQ. 1) THEN
ICH (1) • 1
ICH (2) • 0
L c 1
GO TO 150

* 2 channels to choose from

ELSE IF (NCHAN .EQ. 2) THEN
IM(l) •'PLOT'
DO 60 J • 1,2

60 IM(J+l) • NAME(J)
IM (4) • 'BOTH'
IM (4) (6:) • NAME (3)
IM(5) • 'CANCEL'
IDEF = 3
IF (ICH(l) .EQ. 1 .AND. ICH(2) .EQ. 0) IDEF = 1
IF (ICH(l) .EQ. 2 .AND. ICH. (2) .EQ. 0) IDEF = 2

CALL MENU (IM, S, MA,. ID~F, IRET)
IF (IRET .EQ. 4) THEN

ICH (1) • 0
ICH (2) • 0
RETURN

ELSE IF (IRET .EQ. 3) T~EN
ICH (1) = 1
ICH (2) • 2

213

L = 2
ELSE

L = 1
ICH (1) IRET
ICH (2) 0

END IF

* 3 or more channels to choose from

ELSE
DO 50 I= 1, NCHAN

50 IM (I+ 1) = NAME (I)
IM (1) = 'CHOOSE FIRST CHANNEL TO PLOT'
IM (NCHAN + 2) = 'CANCEL'

IF (ICH(l) .LT. 1 .OR. ICH (1) .GT. NCHAN) ICH (1) = 1
CALL MENU (IM, NCHAN + 2, MA, ICH (1), IRET)
IF (IRET .EQ. NCHAN + 1) THEN

ICH (1) 0
ICH (2) = 0
RETURN

END IF
ICH(l)•IRET
L = 1

IM (1) = 'CHOOSE SECOND CHANNEL TO PLOT'
IM (NCHAN + 2) = 'JUST DO THE FIRST PLOT'
IF (ICH(l) .EQ. ICH(2)) ICH(2) = ICH(l) + 1
IF (ICH(2) .LT. 1 .OR. ICH(2) .GT. NCHAN) ICH(2) 1
IF (ICH(2) .EQ. ICH(l)) ICH(2) = 2
CALL MENU (IM, NCHAN + 2, MA, ICH(2), IRET)
IF (IRET .EQ. NCHAN + 1) THEN

ICH (2) = 0
L = 1

ELSE
ICH(2)=IRET
L = 2

END IF
END IF

C GET SCALES

150 CONTINUE

DO 200 I=l,L
ICHI = ICH(I)
WRITE (MENSCL, 9020) NAME (ICHI)

9020 FORMAT('SELECT FULL SCALE FOR ',AB)

X = YMXRNG (!CHI) * .2
CALL SCLUP (X, Xl, YRANGE (!CHI))
X = YMXRNG(ICHI) * .005
CALL SCLDWN (X,Xl, YLL)
CALL GETLEN (YRANGE(ICHI),YLL,YMXRNG(ICHI),UNITS(ICHI),

& MENSCL,PRMSCL,IRET)
IF (IRET .EQ. 1) RETURN

200 CONTINUE

1000 RETURN

214

END

215

plotsubs.for

$TITLE:'PLOT SUBROUTINES'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE GRCUR.S (!START, IPLT, KCURS, NPTS, IMAX, NPTOT,
& NPMAX,IUPDT, XMIN, XMAX, XSTART, DX, YMIN, YMAX,
& ICH)

**********************~**
*

*
*
*
*
*

*
*
*

*
*
*

*
*

*
*
*
*
*

keys. Move cursor and update plot parameters

offset (in file) to 1st point in plot.
number of active plot (1 or 2).

Interpret cursor
if indicated.
--> ISTART int*4
<-> IPLT int *2
<-> KCURS int*4 offset to present cursor position.

int*4 number of points on the screen. <->
-->
-->
-->
<--

<->
<->
-->
-->
<->
<->
-->

NPTS
IMAX
NPTOT
NPMAX
IUPDT

XMIN
XMAX
XSTART
DX
YMIN
YMAX
ICH

int*2 number of plots on screen (1 or 2).
int*4 numl;/er of points in data file.
int*4 max number of points that can be plotted.
int*2 return~ cod. 0 I and KCURS updated;• 1 ·= changed

limits for.one plot; 2 = changed limits for 2
.plots; 3=quit.

real*4 minimum·x value.
real*4 maximum x value.
real*4 value ·of x at start of file (i=0).
real*4 sample interval.
real*4 ~rray with min y values for each channel in file.
real*4 ~rray with max y values for each .channel in file.
int*2 ~rray with id no's of plotted channels.

INTEGER*2 ICH(*)
INTEGER*4 KK,NPTOT,NPTS, ISTART, NPMAX,KCURS ·
REAL YMIN(*), YMAX(*)

KKINDEX=NPTS / 20 + l
KK = KCURS - ISTART

C WAIT FOR A KEY
10 CALL KCLEAR
2 0 J= IGKEY (l

IF(J.EQ. 0) GOTO 20
IUPDT=0

C PRINT SCREEN IF KEY WAS 'P'

*

*

IF (J .EQ. 80 .OR. J .EQ. 112) THEN
CALL SETGPR (1)
CALL GPRINT "
GOTO 10

ELSE IF (J .EQ. 13) THEN
IPLT = IMAX - IPLT + 1

Zoom keys. after+ or-, wait for next key(s) to finish.
Can have 1 or 2 zo?m keys followed by x or y.

ELSE IF (J .EQ. 43 .OR. J .EQ. 45) THEN

2!.6

IF (J .EQ. 45) THEN
ZOOM= 1.5

25 CALL KCLEAR
30 J = IGKEY()

IF (J .EQ. 0) THEN
GO TO 30

ELSE IF (J .EQ. 45) THEN
ZOOM• 4.
GO TO 25

ELSE IF (J .EQ. 88 .OR. J .EQ. 120) THEN
GO TO 100

ELSE IF (J . EQ. 89 .OR. J .EQ. 121) THEN
GO TO 200

END IF
ELSE IF (J . EQ. 43) THEN

ZOOM= 1/3.
35 CALL KCLEAR
40 J = IGKEY()

IF (J . EQ. 0) THEN
GO TO 40

ELSE IF (J . EQ. 43) THEN
ZOOM= 1/6.
GO TO 35

ELSE IF (J . EQ. 88 .OR. J .EQ. 120) THEN
GO TO 100

ELSE IF (J .EQ. 89 . OR. J .EQ . 121) THEN
GO TO 200

END IF
END IF

C REST ARE ALL CURSOR KEYS
ELSE IF(J .GT. 0) THEN

GOTO 10

C CHECK FOR UP ARROW
ELSE IF(J .EQ. -72)THEN

YR= (YMAX(ICH(IPLT)) - YMIN(ICH(IPLT))) * .25
YMAX(ICH(IPLT)) = YMAX(ICH(IPLT)) + YR
YMIN (ICH (IPLT)) = YMIN(ICH(IPLT)) + YR
IUPDT = 1

C CHECK FOR DOWN ARROW
ELSE IF(J .EQ. -80)THEN

YR= (YMAX(ICH(IPLT)) - YMIN(ICH(IPLT))) * .25
YMAX(ICH(IPLT)) = YMAX(ICH(IPLT)) - YR
YMIN(ICH(IPLT)) = YMIN(ICH(IPLT)) - YR
IUPDT = 1

C CHECK FOR RIGHT ARROW
ELSE IF(J .EQ. -77)THEN

IF (KK .LT. NPTS- l)KK = KK + 1

C CHECK FOR LEFT ARROW
ELSE IF(J .EQ. -75)THEN

IF (KK .GT. 0) KK • KK - 1

C CHECK FOR CONTROL RIGHT ARROW
ELSE IF (J .EQ. -116)THEN

2.17 ·

IF(KK+KKINDEX .LE. NPTS)KK = KK + KKINDEX

C CHECK FOR CONTROL LEFT ARROW
ELSE IF (J .EQ. -115)THEN

IF(KK-KKINDEX .GE. 0) KK = KK - KKINDEX

C PAGE UP (FULL OR HALF)
ELSE IF(J .EQ. -73 .OR. J .EQ. -132) THEN

XR = XMAX - XMIN
IF (J .EQ. -73) THEN

IF(ISTART+NPTS .GT. NPTOT) GOTO 10
XMIN = XMIN + XR

ELSE
IF(ISTART+NPTS/2 .GE. NPTOT) GOTO 10
XMIN = XMIN + XR * .5

END IF
NPTS = XR /DX+ 1
XMAX = XMIN + XR
ISTART = (XMIN - XSTART) / DX
IF (!START+ NPTS .GT. NPTOT) NPTS
IUPDT = 2

C PAGE DOWN

NPTOT - !START

ELSE IF (J .EQ. -81 .OR. J .EQ. -118) THEN
XR = XMAX - XMIN
NPTS = XR / DX
IF (J .EQ. ~81) THEN

IF(ISTART .LT. NPTS)THEN
XMIN=XSTART

ELSE
XMIN = XMIN - XR

END IF
ELSE

IF (!START .LT. NPTS / 2) THEN
XMIN XSTART

ELSE
XMIN

END IF
ENDIF

XMIN - XR * .5

XMAX = XMIN + XR
!START= (XMIN - XSTART) / DX
IF (!START+ NPTS .GT. NPTOT) NPTS = NPTOT - ISTART
IUPDT = 2

* Quit.

ELSE IF (J .EQ. -79) THEN
IUPDT = 3

* Nothing valid, so wait for next key.

ELSE
GO TO 10

END IF
KCURS = ISTART + KK
IF (KCURS .GT. NPTOT) KCURS
RETURN

* Zoom in/out of x.

ISTART + l

218

100 CONTINUE
KCURS =!START+ KK
IF (KCURS .GT. NPTOT) KCURS •!START+ l
CALL SCLUP (ZOOM, Xl, ZOOM)
XR • XMAX - XMIN
XR = XR * ZOOM
XMIN = AINT ((DX* KCURS) / XR) * XR + XSTART
!START= (XMIN - XSTART) / DX
XMAX = XMIN + XR
NPTS = XR /DX+ 1
IF (ISTART + NPTS .GT. NPTOT) NPTS = NPTOT - ISTART
IF (NPTS .GT; NPMAX) NPTS = NPMAX
IUPDT = 2
RETURN

* Change scale factor of y axis.
200 CALL SCLUP (ZOOM, Xl, ZOOM)

$PAGE

IF (YMAX(ICH(IPLT)) * YMIN(ICH(IPLT)) .EQ. 0.) THEN
YMAX(ICH(IPLT)) = YMAX (ICH(IPLT)) * ZOOM
YMIN(ICH(IPLT)) = YMIN(ICH(IPLT)) * ZOOM

ELSE
YM = (YMAX(ICH(IPLT)) + YMIN(ICH(IPLT))) * .5
YR= (YMAX(ICH(IPLT)) - YMIN(ICH(IPLT))) * .5 * ZOOM
YMAX (ICH (IPLT)) = YM + YR
YMIN(ICH(IPLT)) = YM - YR

END IF
IUPDT = 1
KCURS = KK + ISTART
IF (KCURS .GT. NPTOT) KCURS
RETURN

END

!START+ 1

219

SUBROUTINE SCLOP(X,XNORM,XUP)

C THIS SUBROUTINE SCALES A VARIABLE UP TO THE NEXT
C MULTIPLE OF 1, 2 OR 5

$PAGE

MAG=ALOGl0(X)
IF(X .LT. 1) MAG=MAG-1
XNORM=X* .1 ** MAG
XUP=2.
IF(XNORM .GT. 2.02 .AND. XNORM .LE. 5.05)XUP=5.
IF (XNORM .GT. 5.05) XUP=l0.
IF (XNORM .LT. 1.0l)XUP=l.
XUP=XUP*l0.0**MAG
RETURN
END

220

SUBROUTINE SCLD'NN (X,XNORM,XDOWN)

C THIS SUBROUTINE SCALES A VARIABLE DOWN TO THE NEXT
C MULTIPLE OF 1, 2 OR 5

$PAGE

MAG=ALOGl0 (X)
IF(X .LT. 1) MAG=MAG-1
XNORM=X* .1 ** MAG
XDOWN=2.
IF (XNORM .GT. 1. 98 .AND. XNORM . LE. 4. 95) XDOWN=2.
IF (XNORM .GT. 5.05) XDOWN=5.
IF (XNORM .GT. 9.9)XDOWN=10.
XDOWN=XDOWN*l0.0**MAG
RETURN
END

221

SUBROUTINE TIKSET (XMIN, XMAX, TICK, TMIN, TMAX, NTICK)

* Determine first and last tick marks in a given range.
*
* --> XMIN real*4 minimum limit in range (eng. units)
* --> XMAX real*4 maximum linit to range (eng. units)
* --> TICK real*4 tick interval (eng. units).
* <-- TMIN real*4 first tick interval within range.
* <-- TMAX real*4 last tick interval within range.
* <-- NTICK int number of ticks within range.
**

TMIN = INT (XMIN / TICK - .01) * TICK
TMAX = INT (XMAX /TICK+ .01) * TICK
IF (TMIN .LT. XMIN - .01 * TICK) TMIN
IF (TMAX .GT. XMAX + .01 * TICK) TMAX =
NTICK = (TMAX - TMIN) /TICK+ 1.5
RETURN
END

TMIN + TICK
TMAX TICK

**
SUBROUTINE LABEL (X, STRING, L)

**
*
*

This subroutine converts a real number into a string for Halo.

* --> X real*4 number to be converted
* <-- STRING char*l0 string representation of X, with beginning and
* ending\ characters for Halo.
* <-- L int*2 number of characters in STRING. (Not counting
* beginning and ending \'s.)
**

CHARACTER*l0 STRING
CHARACTER*13 KEYBUF
INTEGER*2 L
L = 8
STRING(l:1) • '\'
CALL STRX (X, KEYBUF, L)
STRING (2:) = KEYBUF (:L)
STRING (2+L:) = '\'
RETURN
END

222

PRFCMP.FOR

$TITLE:'SUBROUTINE PRFCMP'
$NOFLOATCALLS
$STORAGE:2

SUBROUTINE PRFCMP (HANDLE)

* This subroutine does the basic signal processing, converting a
* data file from an integer*2 representation of raw data into 3
* inter-leaved teal*4 representations of slope profile, rut depth,
* and e'ievation profile.

*
*
*
*
*

Logical keys--true if output channel will be created [SETUP]:
RPROF, LPROF, LRUT, CRUT, RRUT
TSTTYP 3 for normal test, 5 for bounce test.

= 7 if damaged during processing.

Channel ID numbers for 8 raw data channels [SETUP].:
*
*
*
*

ICHHl, ICHAl, ICHV, ICHA2, ICHH2, ICHH3, ICHH4, ICHH5

* Channel ID numbers for 2 data channels in profile files [SETUP]:
* ILPRF, IRPRF

*
*
*
*
*
*
*

Channel ID numbers for 6 data channels in rut file [SETUP]:
ILIRI, IRIRI, IVEL, ILR, ICR, IRR

Buffers:

*
*
*
*

MAXBUF

PCBUFI

number of available full-words for all buffers,
including the raw input data and all output [SETUP].
integer*2 buffer available from common in
IBM PC [PCBUF].

PCBUFR = real*4 buffer equivalenced to PCI2 [PCBUF].

*
*
*
*
*

Number of
NCHPRF
NCHRUT
NCHRAW

channels in buffers and files [SETUP]:
no. of channels in profile files (PRFBUF
no. of channels in compressed Rut file.
no. of channels of raw input.

* Number of full-words (4-bytes) in buffers [LOCAL]:

and ELVBUF) .

* NBUFFW no. of full-words between buffer starts on tape.
* NELVFW no. of full-words in elevation buffer·.
* NPRFFW no. of full-words in slope profile buffer.
* NRAWFW no. of full-words in input buffer.
* NRUTFW = no. of full-words in RUT buffer.
*
* Number of samples in buffers
* (Note: "Npoints" = "Nsamp" x "Nchans ") [LOCAL] :
* NFSAMP no. of samples used to initialize filter.
* NPSAMP no. of samples/buffer for slope profile. Input
* buffer includes 1 extra point.
* NRSAMP no. of samples/buffer for rut and elevation data.
*
* Number of samples in test
* (Note: "Npoints" = "Nsamp" x "Nchans") [SETUP]:
* NBUFS = no. of buffers in entire test.

223

* NSAMP no. of raw data samples in entire test.·
* NSPTOT =no.of profile samples in profile file.
* NSRTOT no. of rut samples in compressed file.

*
* Counters [LOCAL]:
* LSTBUF = number of previous buffer read from tape;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*

*
*
*
*

Computation
COFINT

DELTAX
LNGWAV

TRIM

constants:
coefficient used in profile computation [LOCAL].
COFINT = 1 - DELTAX/LNGWAV
sample interval for raw data [SETUP].
time-constant for high-pass filter built into the
profile computation. Actually, LNGWAV has units of
length (meters) rather than time [SETUP].
decimation ratio for rut data. (Every TRIM-th point
is kept after decimation.) TRIM must be an even
no [SETUP].

Gains and scale factors used in computations:
GAIN array of gains for raw data. [SETUP].
GAINAL = accel/speed gain used in computing· L. profile [LOCAL].
GAINAR = accel/speed gain used in computing R. profile [LOCAL].
GAINHL, CGHL = height gains used in computing L. profile [LOCAL].
GAINHR, CGHR = height gains used in computing R. profile [LOCAL].
SCLFA = scale factor used convert acceleration to m/s/s [SETUP].
SCLFDX scale factor used convert DELTAX-to m [SETUP].
SCLFH scale factor used convert height tom [SETUP].
SCLFV scale factor used convert test speed to m/s [SETUP):

Biases [LOCAL]:
BACCl bias in accelerometer #1 (integer*2).
BACC2 bias in accelerometer 12 (integer*2).
BLPRF bias in left slope profile signal (real).
BRPRF bias in right slope profile signal (real).
BVEL bias in velocity signal (integer*2).

Integrals [LOCAL):
LAINT = integral of left accelerometer.
RAINT integral of right accelerometer.
LELEV elevation of left profile at end of buffer.
RELEV = elevation of right profile at end of buffer.·

Variables used in quarter-car simulation [LOCAL]:
XL!, XL2, XL3, XL4 = state variables for 1/4 car on left.
XRl, XR2, XR3, XR4 = state variables for 1/4 car on right.
LROUGH roughness of left profile at end of buffer.
RROUGH = roughness of right profile at end of buffer.

Special functons and subroutines called by prfcmp:
AVEVEL smooths and decimates signal. Input is integer*2

DEBIAS
IAVE
PRFELV
PRFIRI
RAVE

RDTAPE

array; output is real*4 array.,
remove bias from signal in 2-D real*4 array.
finds average of signal in 2-D integer*2 array.
compute elevation profile from slope profile.
compute IRI ·roughness from slope profile.
finds average ·of signal in 2-D real*4 array.
array; output is real*4 array.
read binary data from tape file.

224

* WRTAPE -- write binary data to tape file.
*

$INCLUDE:'SETCOM'
$INCLUDE:'BUFCOM'

INTEGER*2 BACCl, BACC2, BVEL, IAVE, IERR, HANDLE
INTEGER*4 I, IREC, IAL, IAR, IHL, IHR, IPL, IPR, IV, LSTBUF,

& NFSAMP, NRAWFW, OFFSET, NBYTES, Ill
REAL*4 GAINAL, GAINAR, CGHL, CGHR, LAINT, RAINT, GAINHR,

& GAINHL, VEL, LELEV, RELEV, LROUGH, RROUGH

* Create bogus deltax if this is a bounce test.

*
*
*
*
*
*
*

*

IF (TSTTYP .EQ. 5) THEN
DT = IDIV * .4190477E-06
V = (3800. * GAIN (3) - ZDATA (3)) * SCLFV
DELTAX DT * V / SCLFDX
LNGWAV = 1. * DELTAX / DT
DXTRIM •DX* TRIM
CALL SETSTM

END IF

Set the number of samples contained in the PC buffer. Choose
sizes to maximize the amount of data processed in each buffer.
First calculate sizes assuming the whole test fits in one buffer.
Then check this assumption, and set up for multiple buffers if
necessary.

NRSAMP (NSAMP - 1) / TRIM
NRUTFW NRSAMP * NCHRUT
NRAWFW NCHRAW * NSAMP / 2 + 2 + .5
MAXBUF = NRAWFW + NRUTFW
NPSAMP = NRSAMP * TRIM
NBUFS = 1

IF (MAXBUF .GT. MXBFSZ) THEN
MAXBUF = MXBFSZ
NRSAMP = (MAXBUF - 2 - NCHRAW) / (NCHRUT +TRIM* NCHRAW / 2)
NPSAMP =TRIM* NRSAMP
NBUFS • (NSAMP - 1) / NPSAMP
IF (MOD (NPSAMP, NSAMP - 1) .NE. 0) NBUFS NBUFS + 1

END IF

* Set the long-wave cutoff as a funtion of the minimun test speed.

*

IF (TSTTYP .EQ. 3) THEN
LNGWAV = VELMIN * 7. * SCLFV / SCLFDX
NFSAMP 6 * LNGWAV / DELTAX

ELSE
NFSAMP = NPSAMP - 1

END IF
IF (NFSAMP .GT. NPSAMP - 1) NFSAMP = NPSAMP - 1

* Calculate number of buffers and total samples for test.
* We lose the last sample (to differientiate the height signals).
*

NSRTOT = (NSAMP - 1) / TRIM

225

NSPTOT = NSRTOT * TRIM
*
* Set the number of words in the various portions of buffers.
*

*

NRUTFW
NPRFFW
NELVFW
NRAWFW
NBUFFW

NCHRUT * NRSAMP
= NCHPRF * NPSAMP

NCHPRF * NRSAMP
(NCHRAW * (NPSAMP

NCHRAW * NPSAMP /
+ 1) + 1) / 2 + 2'
2

* Initialize counters and integrals.
*

LELEV 0
RELEV 0
LAINT 0
RAINT 0
LSTBUF = 0

* Update status report on screen, then read next buffer. __

*

*

*

15 CONTINUE
CALL CLRLIN (20)
CALL SETCUR (20,0)
WRITE (*, '(A,I2,A,I2\) ') 'NOW PERFORMING FIRST PASS ON BUFFER#',

& LSTBUF + 1,' OF',NBUFS
CALL SETCUR (21,0)
WRITE (*, 1 (A\)') 'READING IN DATA ...

OFFSET= LSTBUF * NBUFFW * 4
NBYTES = NRAWFW * 4
CALL RDTAPE (HANDLE, PCBUFI, OFFSET, NBYTES, IERR)

CALL SETCUR (21,0)
WRITE (*,'(A\)') 'CONDITIONING SIGNALS ...

* Modify number of samples if this is the last buffer.
*

*
*
*

*

IF (LSTBUF
NRSAMP
NPSAMP

END IF

.GE. NBUFS - 1) THEN
(NSAMP - 1 - NPSAMP * LSTBUF) / TRIM
TRIM* NRSAMP

Average and decimate speed signal.

IF (ICHV .GT. 0)
& CALL AVEVEL (PCBUFI (ICHV), NCHRAW, NPSAMP, PCBUFR (IVEL+
& NRAWFW), NCHRUT, TRIM, GAIN (3), ZDATA (3))

* Compute up to three rut-depth signals.
*

CALL SETCUR (21,0)
WRITE (*,'(A\)') 'COMPUTING RUT DEPTH ...
IF (LRUT)

& CALL RUTCMP (PCBUFI (ICHH4), PCBUFI (ICHH2), PCBUFI
& (ICHH3), NCHRAW, NPSAMP, PCBUFR (NRAWFW + ILR),
& NCHRUT, TRIM, GAIN (7), GAIN (5), GAIN (6),
& ZDATA (7), ZDATA (5), ZDATA (6),
& H4LAT, H2LAT)

226

IF
&
&
&
&
&

IF
&
&
&
&
&

*

(CRUT)
CALL RUTCMP (PCBUFI (ICHH2), PCBUFI (ICHH3), PCBUFI

(ICHHl), NCHRAW, NPSAMP, PCBUFR (NRAWFW + ICR),
NCHRUT, TRIM, -GAIN (5), -GAIN (6), -GAIN (ll,
-ZDATA (5), -ZDATA (6), -ZDATA (1),
H2LAT, HlLAT)

(RRUT)
CALL RUTCMP (PCBUFI (ICHH3), PCBUFI (ICHHl), PCBUFI

(ICHH5), NCHRAW, NPSAMP, PCBUFR (NRAWFW + IRR),
NCHRUT, TRIM, GAIN (6), GAIN (1), GAIN (8),
ZDATA (6), ZDATA (1), ZDATA (8),
Hl·LAT, H5LAT)

* Compute bias in accelerometer signal(sl if this is the first
* buffer. Also, copy gains into scaler variables. The slope profile
* will have units: H/L, where ff are the units of the height sensor
* and Lare the units of the sample interval DELTAX. As 'a result,
* all subsequent elevation signals will have the same units as the
* height sensors.
*

*

*

•

CALL SETCUR (21,0)
WRITE (*,'(A\)') 'COMPUTING SLOPE PROFILE ...

IF (ICHV .NE. 0) BVEL = ZDATA (3) / GAIN (3)
COFINT = 1. - DELTAX / LNGWAV
IF (LPROF .AND. (LSTBUF .EQ. 0)) THEN

BACC2 = IAVE (PCBUFI (ICHA2), NCHRAW, NFSAMP)
GAINAL = -GAIN (4) * SCLFA * DELTAX / (GAIN (3) *

& SCLFV) ** 2 / SCLFH * SCLFDX ** 2

&

GAINHL = -GAIN (5) / DELTAX
CGHL = COFINT * GAINHL

END IF

IF (RPROF
BACCl =
GAINAR

GAINHR

.AND. (LSTBUF .EQ. 0)) THEN
IAVE (PCBUFI (ICHAl), NCHRAW, NFSAMP)

-GAIN (2) * SCLFA * DELTAX / (GAIN (3) *
SCLFV) ** 2 / SCLFH * SCLFDX ** 2

= -GAIN (1) / DELTAX
CGHR

END IF
= COFINT * GAINHR

* Initialize pointers for profile computation.
*

*

IAL ICHA2
IHL = ICHH2
IAR = ICHAl
IHR ICHHl
IV= ICHV
IPL = ILPRF
IPR= IRPRF

* Compute slope profile for case of left profile only .

&

IF (LPROF
DO·50 I

VEL =
LAINT

. AND .. NOT. RPROF) THEN
= 1, NPSAMP
PCBUFI (IV) - BVEL

COFINT * LAINT + GAINAL * (PCBUFI (IAL) - BACC2) /
VEL ** 2

227

PCBUFR (IPL) = LAINT + CGHL * PCBUFI (IHL + NCHRAW) -
& GAINHL * PCBUFI (IHL)

IAL = IAL + NCHRAW
IHL = IHL + NCHRAW
IV= IV+ NCHRAW
IPL= IPL+ NCHPRF

50 CONTINUE
END IF

*
* Compute slope profile for case of right profile only.

*
IF (RPROF .AND .. NOT. LPROF) THEN

DO 60 I= 1, NPSAMP
VEL = PCBUFI (IV) - BVEL
RAINT ~ COFINT * RAINT + GAINAR * (PCBUFI (IAR) - BACCl) /

& VEL ** 2
PCBUFR (IPR) = RAINT + CGHR * PCBUFI (IHR + NCHRAW) -

& GAINHR * PCBUFI (IHR)
IAR = IAR + NCHRAW
IHR = IHR + NCHRAW
IV= IV+ NCHRAW
IPR= IPR+ NCHPRF

60 CONTINUE
END IF

*
* Compute slope profile for case of both profiles.
*

69 IF (RPROF .AND. LPROF) THEN
DO 70 I = 1, NPSAMP

VEL = PCBUFI (IV) - BVEL
RAINT = COFINT * RAINT + GAINAR * (PCBUFI (IAR) - BACCl)

& VEL ** 2
PCBUFR (IPR) • RAINT + CGHR * PCBUFI (IHR + NCHRAW)

& - GAINHR * PCBUFI (IHR)
LAINT = COFINT * LAINT + GAINAL * (PCBUFI (IAL) - BACC2)

& VEL ** 2
PCBUFR (IPL) = LAINT + CGHL * PCBUFI (IHL + NCHRAW)

& - GAINHL * PCBUFI (IHL)
IAL IAL + NCHRAW
IHL IHL + NCHRAW
IAR IAR + NCHRAW
IHR IHR + NCHRAW
IV= IV+ NCHRAW
IPL= IPL+ NCHPRF
IPR= IPR+ NCHPRF

70 CONTINUE
END IF

*
* Compute and correct bias in slope profile(s) if this is
* the first buffer. Also initialize quarter-car here.

*

*

IF (LPROF .AND. (LSTBUF .EQ. 0)) THEN
BLPRF = RAVE (PCBUFR (ILPRF), NCHPRF, NFSAMP)
CALL DEBIAS (PCBUFR (ILPRF), NCHPRF, NPSAMP, BLPRF)
LAINT = LAINT - BLPRF

Ill 11. / DELTAX
XLl RAVE (PCBUFR (ILPRF), NCHPRF, Ill)

228

I

I

*

*

XL2 = 0
XL3 XLl
XL4 0
LROUGH - 0

END IF

IF (RPROF .AND. (LSTBUF .EQ. 0)) THEN
BRPRF = RAVE (PCBUFR (IRPRF), NCHPRF, NFSAMP)
CALL- DEBIAS (PCBUFR (IRPRF), NCHPRF, NPSAMP, BRPRF)
RA.INT"" RA.INT - BRPRF

Ill m 11. / DELTAX
XRl RAVE (PCBUFR (IRPRF), NCHPRF, Ill)
XR2 = 0
XR3. XRl
XR4 m 0
RROUGH = 0

END IF

* Before writing any data to tape, set TSTTYP to 7 so that if
* something goes wrong the file will be identified as unrecoverable.

*

!DUMMY= TSTTYP
TSTTYP = 7
CALL UPDSET (HANDLE)
TSTTYP = IDUMMY

* Write profile buffer to tape. Do this before computing IRI, .
* in case the IRI analysis eventually includes a moving average.·
*

*
*
*

IF (RPROF .QR. LPROF) THEN
CALL SETCUR (21,0)
WRITE (*,'(A\)') 'WRITING SLOPE PROFILE ...
OFFSET= LSTBUF * NBUFFW * 4
NBYTES = NPRFFW * 4
CALL WRTAPE (HANDLE, PCBUFR, OFFSET, NBYTES, IERR)
CALL SETCUR (21,0)
WRITE (*, ' (A\) ') 'CALCULATING IRI ROUGH.NESS ...

END IF

Compute IRI roughness for profiles.

IF (LPROF) CALL PRFIRI (PCBUFR (ILPRF), PCBUFR (ILIRI + NRAWFW),
& XLl, XL2, XL3, XL4, LROUGH)

IF (RPROF) CALL PRFIRI (PCBUFR (IRPRF), PCBUFR (IRIRI + NRAWFW),
& XRl, XR2, XR3, XR4, RROUGH)

* Write rut-depth buffer to tape.
*

CALL SETCUR (21,0)
WRITE (*,'(A\)') 'WRITING'RUT DEPTH AND ROUGHNESS ...

*
OFFSET= (LSTBUF * NBUFFW + NP~FW) * 4
NBYTES = NRUTFW * 4.
CALL WRTAPE (HANDLE, PCBUFR (NRAWFW + 1), OFFSET, NBYTES, IERR)

*
* Go back and read some more, unless this was the last buffer.
*

229

LSTBUF = LSTBUF + 1
IF (LSTBUF .LT. NBUFS) GO TO 15

* Have now finished the first pass. Make a second pass, to
* integrate backwards and calculate the elevation benchmarks.
*

*
*
*

IF (LPROF .OR. RPROF) THEN

Read slope profile from "tape."

DO 100 LSTBUF = NBUFS - 1, 0, -1
CALL SETCUR (20,0)
WRITE (*, 1 (A, 12, A\) 1)

1 SECOND PASS FOR BUFFER #',
& LSTBUF + 1,'

CALL SETCUR (21,0)
WRITE (*,'(A\)') 'READING ...
OFFSET= LSTBUF * NBUFFW * 4
NBYTES = NPRFFW * 4
CALL RDTAPE (HANDLE, PCBUFR, OFFSET, NBYTES, !ERR)
CALL SETCUR (21,0)
WRITE (*,'(A\)') 'COMPUTING ELEVATION ... '

*
* Compute elevation data.
*

IF (LPROF) CALL PRFELV (PCBUFR (ILPRF), NCHPRF, NPSAMP,
& PCBUFR (NRAWFW + ILPRF), NCHPRF, TRIM, DELTAX, COFINT,
& LELEV).

IF (RPROF) CALL PRFELV (PCBUFR (IRPRF), NCHPRF, NPSAMP,
& PCBUFR (NRAWFW + IRPRF), NCHPRF, TRIM, DELTAX, COFINT,
& RELEV)

*
* Re-set NPSAMP 'for next call to PRFELV.
*

*

NRSAMP
NPSAMP

(MAXBUF - NCHRAW) / (NCHRAW *TRIM/ 2 + NCHRUT)
NRSAMP * TRIM

* Write elevation data to tape.
*

*

*
*

CALL SETCUR (21,0)
WRITE (*,'(A\)') 'WRITING ...
OFFSET= (LSTBUF * NBUFFW + NPRFFW + NRUTFW) * 4
NBYTES = 4 * NELVFW
CALL WRTAPE (HANDLE, PCBUFR (NRAWFW + 1), OFFSET, NBYTES,

& !ERR)
100 CONTINUE

END IF

Change TSTTYP to indicate that it's not raw data any more.

IF (TSTTYP .EQ. 3) TSTTYP 2
IF (TSTTYP .EQ. 5) THEN

TSTTYP 6
LNGWAV 1.
DELTAX DT
DXTRIM DELTAX * TRIM

END IF
CALL UPDSET (HANDLE)
RETURN

230

END

231

PRFIRI.FOR

$TITLE:'SUBROUTINE PRFIRI'
$NOFLOATCALLS
$STORAGE:2

SUBROUTINE PRl"IIU (BUFl, BUF2, Xl, X2, X3, X4, ROUGH)
**
* This subroutine filters a slope profile signal using the IRI
* quarter-car simulation. The accwnulated IRI roughness is
* compressed and stored in a separate array. The IRI coefficients
* and the sizes of the arays are obtained from COMMON. This
* subroutine will probably be enhanced to smooth the
* slope profiles, so it should not be called until the profiles are
* stored on tape.
*
* --> BUFl real*4 2-D input array with profile data. Ch-1 is
* processed.
* <-- BUF2 real*4 2-D output array (with rut stuff also.) Ch-1
* is replaced.
* <-> Xl-X4 real*4 vehicle response variables, updated every
* step.
* <-> ROUGH real*4 accumulated roughness, updated every step.
**
$INCLUDE:'SETCOM'
*
$LARGE: BUFl, BUF2

INTEGER*4 I, Il, 12, J
REAL*4 BUFl (*) , BUF2 (*) , Xl, X2, X3, X4,

& XlN, X2N, X3N, X4N, S11, S12, S13, S14, S21,
& S24, S31, S32, S33, S34, S41, S42, S43, S44,
& P4, ROUGH

EQUIVALENCE
& (STM (1, 1) , S11), (STM (2,
& (STM (4, 1) , S41), (STM (1,
& (STM (3, 2) I S32), (STM (4,
& (STM (2, 3) , S23), (STM (3,

EQUIVALENCE
& (STM (1, 4) , S14), (STM (2,
& (STM (4, 4) , S44), (PRM (1) ,
& (PRM (3) , P3), (PRM (4), P4)

*
* <No smoothing for now ... >

*
* CALL SMOOTHERUPPER ...

*
* Simulate vehicle response

*
Il = 1
12 = 1
DO 40 I

DO 30
p =
XlN
X2N
X3N

= 1, NRSAMP
J = 1, TRIM
BUFl (Il)

Xl * S11 + X2
Xl * S21 + X2
Xl * S31 + X2

* S12
* S22
* S32

1) , S21), (STM (3, 1) ,
2) , S12), (STM (2, 2) ,
2) , S42), (STM (1, 3) I

3) , S33), (STM (4, 3) I

4) , S24), (STM (3, 4) ,
Pl) , (PRM (2) , P2),

+ X3 * S13 + X4 * S14
+ X3 * S23 + X4 * S24
+ X3 * S33 + X4 * S34

23.2

S22, S23,
Pl, P2, P3,

S31),
S22),
S13),
S43)

S34),

+ Pl * p
+ P2 * p
+ P3 * p

X4N = Xl * S41 + X2 * S42 + X3 * S43 + X4 * S44 + P4 * P
Xl = XlN
X2 = X2N
X3 X3N
X4 = X4N
ROUGH= ROUGH+ DELTAX * ABS (Xl - X3)

30 Il = Il + NCHPRF
BUF2 (I2) = ROUGH

40 I2 • I2 + NCHRUT
RETURN
END

233

PROCESS.FOR

$TITLE: I PROCESS I

$STO.RAGE: 2
$NOFLOATCALLS

SUBROUTINE PROCESS
**
*
* This subroutine generates the menu for viewing data and calls the
* appropriate subroutines based on the items selected from that menu.

$INCLUDE:'STATCOM'
$INCLUDE: 'HANDLES'
$INCLUDE:'SETCOM'

CHARACTER*32 IMENU(20)
INTEGER*2 MA(20),JUNK(l700)
INTEGER*4 LSATl
CHARACTER*l DR,PF(l6)
LOGICAL OPENFL, QNDPLT
EQUIVALENCE(PFILE,PF)
DATA OPENFL /.FALSE./

* SAVE SETUP ARRAY
CALL WRTSET

MI=l4
DO 10 I=l,MI

10 MA(I)=0
MA(l) =l
MA(2) =l
MA(4) =1
MA(MI) = 1

IMENU(l) ='VIEW AND PROCESS DATA'
IMENU (2) ='OPEN TEST FILE' .
IMENU(3) ='OPEN BOUNCE FILE'
IMENU(4) ='CHECK RAW DATA'
IMENU(5) ='PRE-PROCESS FILES'
IMENU(6) ='-----------------------'
IMENU(7) ='PLOTTING ... '
IMENU(B) ='- PROFILE (DETAILED)'
IMENU(9) ='- PROFILE (QUICK)'
IMENU(l0)='- ROUGHNESS & RUT-DEPTH'
IMENU(ll)='- RAW DATA'
IMENU(l2)='-----------------------'
IMENU(l3)='PRINT NUMERICS'
IMENU(l4)='-----------------------'
IMENU(l5)='BACK TO PREVIOUS MENU ... •

C SET DEFAULT TO 1ST ITEM(SELECT FILE)
IDEF=l
FINIT=0
DR ,. 'D'
IF (TINIT .EQ. 0) DR 'C'

234

C GET SELECTION
50 CONTINUE

CALL MENU(IMENU,MI+l,MA,IDEF,IRET)
IDEF = IRET
GOTO (100,110,200,300,900,900,400,410,500,600,900,800,900,

& 850) IRET

* Open test or bounce file (100, 110)

100 PFILE = 1 :*.OTA'
GO TO 120

110 PFILE = 1 :*:BNC'
120 CALL DRVSEL(DR)

*

IDR • !CHAR (DR) - 64
IF (IDR .GE. 4 .AND. TINIT .EQ. 0) CALL LOADT
PF (1) =DR
CALL FSEL(PFILE,FINIT,JUNK)
IF(FINIT .EQ. 0)GOTO 50

IF (OPENFL) THEN
CALL UPDSET (HANDLE)
CALL HCLOSE (HANDLE, IER)

END IF

Read setup from file and verify choice. Access is set for 2

CALL ADDNUL(PFILE,16)
ACCESS=2
CALL HOPEN(PFILE,HANDLE,ACCESS,IER)
CALL SUBNUL(PFILE,16)
CALL HREAD(HANDLE,SET,2048,RBYTES,IER)
CALL TSTDIS

IF (TSTTYP .EQ. 7) THEN
CALL WAITKY
I = 0

ELSE
CALL SETCUR(23,0)
WRITE(*,' (''IS THIS THE FILE YOU WANTED? ''\) ')
I=l
CALL YESNO(I,23,29,IRET)

END IF

IF (I .EQ. 0) THEN
CALL HCLOSE(HANDLE,IER)
OPENFL = .FALSE.

ELSE
OPENFL = .TRUE.

END IF

* Enable menu options based on TSTTYP and OPENFL.

125 CONTINUE
DO 130 I_ 5, 12

130 MA(I) = 0
MA(3) = 0
IF (.NOT. OPENFL) GO TO 50
IF (TSTTYP .EQ. 4) THEN

235

R/W.

MA(l0) = 1
ELSE

DO 140 I 7, 9
140 MA(I) = 1

MA(12) = 1
END IF

IF (TSTTYP .EQ. 0 .OR. TSTTYP .EQ. 3 .OR. TSTTYP .EQ. 1
& .OR. TSTTYP .EQ. 5) THEN

MA(3) = 1
MA (10) = 1

ELSE IF (TSTTYP .EQ. 4) THEN
MA(3) • 1

END IF
GOTO 50

* Check raw data for saturation.

200 CALL CLRSCR
CALL CHKSAT (HANDLE, 0)
GO TO 125

* Option to compute profile for a list of files.

300 IF (OPENFL) THEN
CALL UPDSET (HANDLE)
CALL HCLOSE(HANDLE,IER)
OPENFL = .FALSE.

END IF
CALL BATCH (DR)
GO TO 125

* Plot elevation profile.

400 QNDPLT = .FALSE.
GO TO 420

410 QNDPLT = .TRUE.
420 IF (TSTTYP .NE. 2 .AND. TSTTYP .NE. 6)

& CALL GOAHED (HANDLE)
IF (TSTTYP .EQ. 2 .OR. TSTTYP .EQ. 6)

& CALL PLTELV (HANDLE, QNDPLT)
GO TO 125

* Plot rut-depth, roughness, speed

500 IF (TSTTYP .NE. 2 .ANO. TSTTYP .NE. 6)
& CALL GOAHED (HANDLE)

IF (TSTTYP .EQ. 2 .OR. TSTTYP .EQ. 6) CALL PLTRUT (HANDLE)
GO TO 125

C PLOT RAW DATA
600 CALL PLTRAW (HANDLE)

GOTO 50

* Print numerics

800 IF (TSTTYP .NE. 2 .AND. TSTTYP .NE. 6)
& CALL GOAHED (HANDLE)

236

IF (TSTTYP .EQ. 2 .OR. TSTTYP .EQ. 6) CALL PRTNUM (HANDLE)
GO TO 125

C RETURN TO MAIN PROGRAM
850 IF (OPENFL) THEN

CALL UPDSET (HANDLE)
CALL HCLOSE(HANDLE,IER)

END IF
CALL RDSET
RETURN

900 CONTINUE
END

$PAGE

237

SUBROUTINE GOAHED(HANDLE)
**
* This warns the user that some
* it might take a few minutes.
* the data.
$INCLUDE:'SETCOM'

INTEGER*2 HANDLE

CALL BEEP
CALL SETCUR (20,0)
WRITE (*,9000)

processing needs to be done and that
If the user answers yes, it processes

9000 FORMAT('THIS FILE HAS RAW DATA AND NEEDS TO BE PROCESSED,'\)
CALL SETCUR (21,0)
WRITE (*, 9010)

9010 FORMAT('WHICH MIGHT TAKE A MINUTE OR TWO. IS THIS OK?'\)
I = 1
CALL YESNO (I, 21, 48, IRET)
IF (I .EQ. 0) RETURN
CALL CLRSCR
IF (TSTTYP .LE. 1) THEN

CALL CHKSAT (HANDLE, 3)
DO 10 I= 18,23

10 CALL CLRLIN (I)
IF (.NOT. ITSOK) RETURN

END IF
IF (TSTTYP .EQ·. 3 .OR. TSTTYP .EQ. 5) CALL PRFCMP (HANDLE)
RETURN
END

238

PROFMAIN.FOR

$TITLE:'PROFILE MAIN'
$STORAGE:2
$NOFLOATCALLS
$INCLUDE:'BUFCOM'
$INCLUDE:'SETCOM'
$INCLUDE:'STATCOM'

CHARACTER*32 MMENU(15)
INTEGER*2 MAVAIL(l5)

5 CALL LOGO
CALL SETCUR(0,0)
WRITE (*' I (A\) I) ' '

C INITIALIZE TIMER BOARD AND ANALOG CONTROL

CALL INITIO

C INITIALIZE SETUP ARRAY AND STATUS CONTROL BLOCK
CALL INITP

C RESTORE ANALOG TO LAST CONDITION
CALL RESTOR

C CHECK A/D
CALL CLRSCR
CALL SETCUR(l2,0)
WRITE(*,' (A,A\) ') 1 (DO NOT ANSWER YES UNLESS THE INSTRUMENTS '

& 'ARE CONNECTED) 1

CALL SETCUR(l0,0)
I=0
WRITE(*,' (A\)') 'PERFORM A/D CHECK?'
CALL YESNO(I,10,20,IRET)
IF(I .EQ. l)CALL ADCHECK

DO 10 I=l, 11
10 MAVAIL(I)=l

MITEMS=l2
MAVAIL(9)=0
MAVAIL(3)=0
MAVAIL(6)=0

MMENU(l)= 'PROFILOMETER MAIN MENU'
MMENU(2)= 'MAKE ROAD MEASUREMENTS'
MMENU(3)= 'VIEW AND PROCESS DATA'
MMENU(4)= '----------------------------'
MMENU(S)= 'LOAD NEW DATA TAPE'
MMENU(6)= 'UNLOAD DATA TAPE'
MMENU(7)= '----------------------------'
MMENU(S)= 'CONFIGURE TRANSDUCERS'
MMENU(9)= 'EXERCISE INPUT/OUTPUT SYSTEM'
MMENU(l0)-'---------------------------- 1

MMENU(ll)='DISPLAY LOGO'
MMENU(l2)='QUIT'

100 CALL MENU(MMENU,MITEMS,MAVAIL,l,IRET)
CALL CLRSCR
CALL SETCUR(0,0)
GOTO (500,1000,100,1500,2000,100,2500,3000,100,4000,4500)IRET

C MAKE ROAD MEASUREMENTS

500 CALL MEASURE
GOTO 100

C PROCESS DATA

1000 CALL PROCESS
GOTO 100

C LOAD DATA TAPE
1500 CALL LOADT

GOTO 100

C UNLOAD DATA-TAPE
2000 CALL UNLDT

GOTO 100

C SETUP TRANSDUCERS
2500 CALL SETUPS

GOTO 100

C EXERCISE INPUT/OUTPU SYSTEM
3000 CALL IOEX

GOTO 100

C DISPLAY LOGO.
4000 CALL LOGO

GO TO 100

4500 CONTINUE
IF(TINIT .EQ. l)THEN
CALL SETCUR(l0,O)
WRITE(*,' (A\)') 'YOU FORGOT TO UNLOAD THE TAPE'
CALL SETCUR(ll,0)
WRITE<*, • (A\> • > • DO NOT TURN POWER 9FF UNTIL TAPE IS REMOVED•
CALL UNLDT
ENDIF
STOP 'RESTART THIS PROGRAM BY TYPING "PROFILE"'
END

240

PRTNUM.FOR

$TITLE:'SUBROUTINE PRTNUM'
$NOFLOATCALLS
$STORAGE:2

SUBROUTINE PRTNUM (HANDLE)
**
*
*
$INCLUDE: 1 SETCOM'
$INCLUDE:'BUFCOM'
$INCLUDE:'STATCOM 1

CHARACTER*l DR, DR2
CHARACTER*8 FN
CHARACTER*3 EXT
CHARACTER*9 N(6),U(6),DASH
CHARACTER*16 PRTFNM
CHARACTER*25 DASHl

INTEGER*2 HANDLE
INTEGER*4 OFFSET, NSMP, II, JJ, ICH
LOGICAL PRTLOG, LFL, LSCR, LLPT, IEXIST
REAL PRTVAR (6)
COMMON/PRSTAT/ PRTLOG(6), LFL, LSCR, LLPT, PRTlST

* If this is the first time (PRTlST <> -1.) then set defaults

IF (PRTlST .NE. -1.) THEN
DASH='---------'
DASHl= '-----------------------------'
PRTlST • -1.
EXT - '
DR = 'C'
LFL-= .FALSE.
LSCR = .TRUE.
LLPT = .TRUE.

DO 10 I= 1, 6
10 PRTLOG(I) = .FALSE.

IF (LPROF) PRTLOG(l) = .TRUE.
IF (RPROF) PRTLOG(2) = .TRUE.
PRTLOG(3) = .FALSE.
IF (LRUT) PRTLOG(4) = .TRUE.
IF (CRUT) PRTLOG(S) = .TRUE.
IF (RRUT) PRTLOG(6) .TRUE.

N (1) = 'L. IRI'
N (2) 'R. IRI'
N (3) 'SPEED'
N (4) IL. RUT'
N (5) = 'C. RUT'
N (6) = 'R. RUT'

U(l) UNITS (11)

241

U(2)
U (3)
U (4)
U (5)
U (6)

END IF

• UNITS(ll)
= UNITS(3)

UNITS(l)
UNITS(l)

= UNITS(5)

* Prepare screen. Start with channel names and status.

CALL WRTSCR ('PRTSCR. 1)

WRITE (*, I (A\)') I I

IF (LPROF) THEN
CALL SETCUR (4,0)
WRITE (*,'(A\)') N(l)
CALL PUTYN (PRTLOG(l),4,18)

END IF

IF (RPROF) THEN
CALL SETCUR (5,0)
WRITE (*,'(A\)') N(2)
CALL PUTYN (PRTLOG(2),5,18)

END IF

IF (LPROF .OR. RPROF) THEN
CALL SETCUR (6,0)
WRITE (*,'(A\)') N(3)
CALL PUTYN (PRTLOG(3),6,18)

END IF

IF (LRUT) THEN
CALL SETCUR (4,40)
WRITE (*, 1 (A\)') N(4)
CALL PUTYN (PRTLOG(4),4,53)

END IF

IF (CRUT) THEN
CALL SETCUR (5,40)
WRITE (*,'(A\)') N(5)
CALL PUTYN (PRTLOG(5),5,53)

END IF

IF (RRUT) THEN
CALL SETCUR (6,40)
WRITE (*, ' (A\) ') N (6)
CALL PUTYN (PRTLOG(6),6,53)

END IF

v'

* Status of device switches and file name.

CALL PUTYN (LSCR,8,22)
CALL PUTYN (LLPT,8,38)
CALL PUTYN (LFL,8,56)
CALL FNMAKE (DR2,FN,EXT,PFILE,1)
EXT= 'NUM'
CALL SETCUR (9,56)
WRITE (*, I (A, A, A, A, A\) I) DR, I : ', FN, I • I, EXT

242

* Print start, stop, increment.

CALL SETCUR (12,18)
WRITE (*,'(A\)') UNITS(lO)
CALL SETCtm. (12,42)
WRITE (*,'(A\)') UNITS(lO)
CALL SETCUR (12,71)
WRITE (*, 1 (A\)') UNITS(lO)

XLL = 0.
XUL = NSRTOT * DXTRIM
IF (PSTART .LT. XLL .OR. PSTART .GT. XUL) PSTART = XLL
IF (PSTOP .LT. XLL .OR. PSTOP .GT. XUL) PSTOP XUL
IF (PINC .LE. DXTRIM .OR. PINC .GT. XUL) PINC= XUL / 10.
CALL SETCUR (12,7)
WRITE (*,' (Fl0.2\) ') PSTART
CALL SETCUR (12,31)
WRITE (*,' (Fl0.2\) ') PSTOP
CALL SETCUR (12,60)
WRITE (*,' (FlO .2\) ') PINC

* There are 14 edit field on the screen, each with a line number.

100 IF (.NOT. LPROF) GO TO 200
CALL YESNOL (PRTLOG(l),4,18,IRET)
GOTO (200,100,200,100,200,100,400,100,100,2000) IRET + 1

200 IF (.NOT. RPROF) GO TO 300
210 IF (.NOT. RPROF) GO TO 100

CALL YESNOL (PRTLOG(2),5,18,IRET)
GOTO (300,100,300,100,300,200,500,200,200,2000) IRET + 1

300 IF ((.NOT. RPROF) .AND. (.NOT. LPROF)) GO TO 700
CALL YESNOL (PRTLOG(3),6,18,IRET)
GOTO (700,210,700,210,700,300,610,300, 300,2000) IRET + 1

400 IF (.NOT. LRUT) GO TO 500
CALL YESNOL (PRTLOG(4),4,53,IRET)
GOTO (500,400,500,400,500,100,400,400,400,2000) IRET + 1

500 IF (.NOT. CRUT) GO TO 600
510 IF (.NOT. CRUT) GO TO 400

CALL YESNOL (PRTLOG(5),5,53,IRET)
GOTO (600,400,600,400,600,200,500,510,510,2000) IRET + 1

600 IF (.NOT. RRUT) GO TO 900
610 IF (.NOT. RRUT) GO TO 510

CALL YESNOL (PRTLOG(6),6,53,IRET)
GOTO (900,510,900,510,900,300,600,610,610,2000) IRET + 1

700 CALL YESNOL (LSCR,8,22,IRET)
GOTO (1200,300,1200,300,1200,700,B00,700,700,2000) IRET + 1

BOO CALL YESNOL (LLPT,8,38,IRET)
GOTO (1300,300,1300,300,1300,700,900,900,B00,2000) IRET + 1

900 CALL YESNOL (LFL,8,56,IRET)

243

GOTO (1000,610,1000,610,1000,800,900,900,900,2000) IRET + 1

1000 IF (.NOT. LFL) GO TO 1400
1010 IF (.NOT. LFL) GO TO 900

CALL GETSTR (DR,1,9,56,IRET)
I=0
DO 1020 J=l, 7
IF (DR .EQ. CHAR(J + 64)) I= 1

1020 CONTINUE
IF (I .EQ. 0) THEN

CALL BEEP
DR= 'C'
CALL SETCUR (9,56)
WRITE (*, I (A\) I) DR
GO TO 1010

ELSE
CALL GFILE (DR,FN,EXT,IEXIST,9,58,IRET)
IF (!EXIST) THEN

CALL SETCUR (10,20)
WRITE (*, 9010)

9010 FORMAT('<That file already exists and will be overwritten.>')
END IF

END IF
GOTO (1400,900,1400,900,1400,800,1100,1010,1010,2000) IRET + 1

1100 IF (.NOT. LFL) GO TO 1400
1110 IF (.NOT. LFL) GO TO 900

CALL GFILE (DR,FN,EXT,IEXIST,9,58,IRET)
IF (!EXIST) THEN

CALL SETCUR (10,20)
WRITE (*,9010)

ELSE
CALL CLRLIN (10)

END IF
GOTO (1400,900,1400,900,1400,1010,1110,1110,1110,2000) IRET + 1

1200 CALL GETR (PSTART, XLL,XUL, 12, 7, 10,' (Fl0 .2\) ', IRET).
GOTO (1300,700,1200,700,1200,1200,1300,1200,1200,2000) IRET + 1

1300 CALL GETR (PSTOP,XLL,XUL,12,31,10,' (Fl0.2\) ',IRET)
GOTO (1400,800,1300,800,1300,1200,1400,1300,1300,2000) IRET. + 1

1400 CALL GETR (PINC,XLL,XUL,12,60,10,' (Fl0.2\) ',IRET)
GOTO (1400, 1110, 1400, 1110, 1400, 1300, 1400, 1400, 1400, 2000) IRET+l

**
*
* Quit the subroutine if there's nothing to print.

2000 CONTINUE
IF ((.NOT. LFL) .AND. (.NOT. LSCR) .. AND. (.NOT.· LLPT)) RETURN
IF (PSTART .GE. PSTOP) RETURN .
IF (PINC .LE. 0) RETURN
IF ((.NOT. PRTLOG(l)) .AND. (.NOT. PRTLOG(2)) .AND.

& (.NOT. PRTLOG(3)) .AND. (.NOT. PRTLOG(4)) .AND.
& (.NOT. PRTLOG(S)) .AND. (.NOT. PRTLOG(6))) RETURN

244

* Set names of units from SETCOM data

0(1) • UNITS(ll)
0(2) - UNITS(ll)
0 (3) • UNITS (3)
0(4) - UNITS(l)
U(S) - UNITS(l)
0(6) - UNITS(5)

* Open printer and/or disk file

IF (LLPT) THEN
OPEN (6,FILE-"LPTl')
WRITE (6, *) CHAR (12)

END IF

IF (LFL) THEN
CALL FNMAKE (DR,FN,EXT,PRTFNM,0)
IF (!EXIST) THEN

OPEN (7,FILE=PRTFNM,STATUS-'OLD')
ELSE

OPEN (7, FILE=PRTFNM, STATUS• 'NEW')
END IF

END IF

* Clear screen

IF (LSCR) THEN
CALL CLRSCR
CALL SETCUR (O,O)

END 'IF

* Everything's in 3's ...

IF (LSCR) WRITE (*,'(4X,A,A,A,7X\)') CHID(lO),' - ',UNITS(lO)
IF (LLPT) WRITE (6,' (4X,A,A,A,7X\) ') CHID(lO),'.- ',UNITS(lO)
IF (LFL) WRITE (7,' (4X,A,A,A,7X\) ') CHID(lO),' - ',UNITS(lO)

DO 2020 Im 1, 6
IF (LSCR .AND. PRTLOG(I)) WRITE (*,'(A\)') N(I)
IF (LLPT .AND. PRTLOG(I)) WRITE (6;' (A\)') N(I)
IF (LFL .AND. PRTLOG(I)) WRITE (7,' (A\)') N(I)

2020 CONTINUE
CALL PRTLF (LSCR,LLPT,LFL)

IF (LSCR) WRITE(*,9050)
9050 FORMAT (' FROM ...

IF (LLPT) WRITE(6,9050)
IF (LFL) WRITE(7,9050)

DO 2030 I• 1, 6

TO '\)

IF (LSCR .AND. PRTLOG(I)) WRITE (*,'(A\)') U(I)
IF (LLPT .AND. PRTLOG(l,)) WRITE (6,' (A\)') U(I) ·
IF (LFL .AND. PRTLOG(I)) WRITE (7,' (A\)') U(I)

2030 CONTINUE
CALL PRTLF (LSCR,LLPT,LFL)

IF (LSCR) WRITE (*,'(A\)') DASHl

245

IF (LLPT) WRITE (6, '(A,A\) 1
) ' ',DASHl

IF (LFL) WRITE (7, '(A\)') DASHl

DO 2 0 4 0 I = 1, 6
IF (LSCR .AND. PRTLOG(I)) WRITE (*, 1 (A\)') DASH
IF (LLPT .AND. PRTLOG(I)) WRITE (6, '(A\)') DASH
IF (LFL .AND. PRTLOG(I)l WRITE (7,'(A\)"'') DASH

2040 CONTINUE
CALL PRTLF (LSCR,LLPT,LFL)

* Loop here until all numerics are printed

IF (PINC .LT. DXTRIM) PINC= DXTRIM
X2 .. PSTART

2050 Xl = X2
X2 = Xl + PINC
IF (X2 .GT. PSTOP) X2 = PSTOP

* Read some data from the file

OFFSET= Xl/DXTRIM
NSMP = X2/DXTRIM
NSMP = NSMP - OFFSET+ 1
IF (NSMP .LE. ll NSMP = 2
IF (OFFSET+ NSMP .GT. NSRTOT) NSMP = NSRTOT - OFFSET
IF (NSMP .LE. 1) GO TO 2080
CALL RDTAPD (HANDLE, PCBUFR, 2, OFFSET, NSMP, IERR)

* Average the variables in the file.

DO 2060 ICH = l,NCHRUT
I= ICH
IF (I .EQ. ILIRI .OR. I .EQ. IRIRI) THEN

IF (I .EQ. ILIRI) 12 1
IF (I .EQ. IRIRI) 12 = 2
PRTVAR (12) = SCLFRI * (PCBUFR (ICH + (NSMP - 1) * NCHRUT)

& - PCBUFR (ICH)) / (DXTRIM * NSMP)
ELSE

SUM= PCBUFR (ICH)
II = ICH
DO 2055 JJ = 2, NSMP

II = II + NCHRUT
SUM= PCBUFR (II) + SUM

2055 CONTINUE

IF (I .EQ. IVEL) THEN
I2 = 3

ELSE IF (I .EQ. ILR) THEN
I2 = 4

ELSE IF (I .EQ. ICR) THEN
I2 = 5

ELSE IF (I .EQ. IRR) THEN
I2 6

END IF
PRTVAR (I2) = SUM/ NSMP

END IF
2060 CONTINUE

246

* Print them

IF (LSCR) WRITE (*,9000) Xl,X2
IF (LLPT) WRITE (6,9000) Xl,X2
IF (LFL) WRITE (7,9000) Xl,X2

9000 FORMAT (Fl0.2,'. -: ',Fl0:2,lX\)

DO 2070 I= 1, 6
IF (LSCR .AND. PRTLOG(I)) WRITE (*,'(F9.2\)')PRTVAR(I)
IF (LLPT .AND. PRTLOG(I)) WRITE (6,' (F9.2\) ')PRTVAR(I)
IF (LFL .AND. PRTLOG(I)) WRITE (7,' (F9.2\) ')PRTVAR(I)

2070 CONTINUE
CALL PRTLF (LSCR,LLPT,LFL)
IF (X2 .LT. PSTOP) GO TO 2050

2080 CONTINUE

$PAGE

IF (LLPT) WRITE (6,*) CHAR (12)
CLOSE (6)
CLOSE(7l

WRITE (*, I (A\)') ' '
IF (LSCR) CALL WAITKY
RETURN
END

247

SUBROUTINE PRTLF (LSCR,LLPT,LFL)
·******************
* Add carriage returns after each line

$PAGE

LOGICAL LSCR,LLPT,LFL
IF (LSCR) WRITE (*,*)
IF (LLPT) WRITE (6,*)
IF (LFL) WRITE (7,*)
RETURN
END

' '
I I

I I

248

SUBROUTINE PU'l'YN (L, IROW, ICOL)

* Put 'Y' or 'N' in position IROW, ICOL, based on L

$PAGE

LOGICAL L
CALL SETCUR (IROW, ICOL)
IF (.NOT. L) WRITE (*,'(A\)') 'N'
IF (L) WRITE (*,'(A\)') 'Y'
RETURN
END

249

SUBROUTINE YESNOL (IL,IR,ICOL,IRET)
**
* Get Yes/No anser and set logical variable.

LOGICAL IL
I=O
IF (IL) I= 1
CALL YESNO (I,IR,ICOL,IRET)
IL= .FALSE.
IF (I .EQ. 1) IL= .TRUE.
RETURN
END

250

PULSE.FOR

$STORAGE:2
$NOFLOATCALLS

SUBROUTINE PULSZ

C THIS SUBROUTINE CHECKS THE ELAPSED DISTANCE VERSUS
C A KNOWN DISTANCE TRAVELLED
C
$INCLUDE:'BUFCOM'
$INCLUDE:'SETCOM'
$INCLUDE: 1 IOPARMS'

INTEGER*4 MAXP,PASS,JJ,KK,II
INTEGER*2 DONE,CONV,AD(5),HIGH,QA(2)
EQUIVALENCE (JJ,QA)

CALL CLRSCR
CALL SETCUR(2,0)
WRITE(*,' (A\)') 'THIS IS A TEST TO COMPARE A MEASURED '
CALL SETCUR(3,0)
WRITE(*,' (A\)') 'DISTANCE WITH THE DISTANCE PROVIDED BY THE'
CALL SETCUR(4,0)
WRITE(*,' (A\)') 'WHEEL PULSER'
CALL SETCUR(S,0)
WRITE(*,' (A\)') .'DO YOU WISH TO CONTINUE ?'
I=l
CALL YESNO(I,5,26,IRET)
IF(I .EQ. 0)RETURN
CALL SETCUR(S,0)
WRITE(*,' (A\) 1) 'ENTER THE DISTANCE YOU WILL TRAVEL BETWEEN'
CALL SETCUR(9,0)
WRITE (*, ' (A\) 1

) 'KEY PRESSES = FEET'
TRUED=5280.
CALL GETR (TRUED, 500., 2 6400., 9, 14, 8,' (FS .1 \) ', IRET)

C SET CONVERSION PARAMETERS
DONE=0
PASS=0
CONV=3
MAXP=l31072/CONV
CALL PHYSAD(IBUF(l),JJ)
AD (1) =l
AD(2)=2
AD(3)=4
AD(4)=CONV
AD(5)=0

C SET DT CLOCK
F=-20000.

C

CALL DTCLOCK(F)
CALL SETAD(AD)

C CALCULATE COUNTER VALUE
C

D=l2.0/4.
IDIV=NINT(D/XDUCGN(9))

. ITMODE=#0221

251

F=lOO.
T=IDIV*XDUCGN(9)/12.0

C
C SET COUNTER #4 FOR APPROPRIATE MODE
300 CALL IOUTB(#CS,TIMERC)

C

CALL IOUTB(4,TIMERC)
McB
L=#OOFF
LOW=IAND(ITMODE,L)
HIGH=ISHFTR(ITMODE,M)
CALL IOUTB(LOW,TIMERD)
CALL IOUTB(HIGH,TIMERD)
LOW=IAND (IDIV, L)
HIGH=ISHFTR(IDIV,M)
CALL IOUTB(#OC,TIMERC)
CALL IOUTB(LOW,TIMERD)
CALL IOUTB(HIGH,TIMERD)

C START COUNTER 4
CALL IOUTB(#68,TIMERC)

C SET FILTER CLOCK
CALL FILCLK (F)

C START
CALL PULTST(PASS,DONE,JJ,CONV,MAXP)

C
C WAIT FOR KEY
C

350

C

CALL SETCUR(l2,0)
WRITE(*,' (A\)')' HIT ANY KEY TO START'
CALL KCLEAR
I=IGKEY ()
IF(I .EQ. O)GOTO 350
CALL GTIME(Il,I2,I3)
TIMlaI1*3600.+I2*60.+I3
CALL SETCUR(l2,16)
WRITE(*, I (A\)') 'STOP I

CALL SETCUR(l4,0)
WRITE(*,' (A\)')' ELAPSED DISTANCE=
CALL SETCUR(l5,0)
WRITE(*,' (A\)')' VELOCITY= MPH'

C ENABLE BOARD INTS+FLIP FLOP
CALL IOUTB(l,CNTRL)
CALL IOUTB(O,INTE)
CALL KCLEAR

500 IF(DONE .NE. 0) GOTO 600
TA=T*PASS
IF (PASS .LT. 2)THEN
V=O.O

FEET'

ELSE
V=FLOAT(IBUF((PASS-2)*3+l))*GAIN(3)-ZDATA(3)
ENDIF
CALL SETCUR(l4,18)
WRITE(*,9520)TA

9520 FORMAT(,FB.l\l
CALL SETCUR(lS,11)
WRITE(*,' (F4.l\) ')V
I=IGKEY ()

252

IF(I .EQ. 0) GOTO 500
CALL GTIME(Il,I2,I3)

600 TIM2=I1*3600.+I2*60.+I3
IF(DONE .EQ. O)DONE=-1
I=INPB(#21)
I=IOR(I, 4)
CALL IOUTB(I,#21)
CALL IOUTB(O,INTD)
IF(DONE .GT. 0) GOTO 700
TA=PASS*T

C CALCULATE AVERAGE VELOCITY
IF(PASS .EQ. O)RETURN
VT=O.O
TSUM=O.O
DO 1000 II=l,PASS
V=FLOAT(IBUF((II-1)*3+1))*GAIN(3)-ZDATA(3)
IF(ABS(V) .LT. O.OOl)RETURN
DT=T/V
TSUM=TSUM+DT
VT=VT+V*DT

1000 CONTINUE
AVVEL=VT/TSUM
DTIME=TIM2-TIM1
AVVELT=TRUED/DTIME*60./88.
CALL CLRLIN (14)
CALL CLRLIN(15)
CALL SETCUR(15,0)
WRITE(*, 1 (A\)') 'PULSER DISTANCE TRUE DISTANCE'
CALL SETCUR(16,0)
WRITE(*, '(F8.1,13X,FB.1\) ')TA,TRUED
CALL SETCUR(18,0)
WRITE(*, '(A\)') 'MEASURED VELOCITY TRUE VELOCITY'
CALL SETCUR(19,0)
WRITE(*,' (4X,F8.2,9X,F8.2\) ')AVVEL,AVVELT
CALL WAITKY
RETURN

700 WRITE(*,*)' A/D ERROR'
WRITE(*,*)' PASSES=',PASS
CALL WAITKY
RETURN
END

253

PU LSETST .ASM

TITLE PULSE TEST
PAGE , 132

DATA SEGMENT PUBLIC 'DATA'
PASSA DW ? ;PASS ADDRESS

DW ?
DONEA DW ? ;DONE ADDRESS

DW ?
PHSAD DW
PHSADH
CONV DW
MAXP DW

?
DW
?
?

?
;PHYSICAL BUFFER ADDRESS

;NUMBER OF CHANNNELS
;MAX NUMBER OF PASSES

MAXPH DW ?
DATA ENDS
DGROUP GROUP DATA
CODE SEGMENT 'CODE'

CS:CODE,DS:DGROUP,SS:DGROUP; ASSUME
DSSAVE DW ? ;SAVE DS

PULTST(PASS,DONE,PHSAD,CONV,MAXP)
PASS=INT*4 PASS#
DONE=INT*2 DONE FLAG -l=DONE l=ERROR 0=NOT DONE
PHSAD=INT*4 PHYSICAL BUFFER ADDRESS
CONV=# OF CONVERSIONS
MAXP=MAX NUMBER OF PASSES

PUBLIC PULTST
PULTST PROC FAR

PUSH BP
MOV BP,SP
MOV DSSAVE,DS ;SAVE DS FOR INTERRUPT
LES BX,DWORD PTR [BP+6] ;GET MAXP ADDRESS
MOV AX,ES: [BX) ;GET LOW WORD
MOV MAXP,AX ;SAVE IT
MOV AX, ES: [BX) +2 ;GET HIGH WORD
MOV MAXPH,AX ;SAVE IT
LES BX,DWORD PTR [BP+l0) ;GET CONV_ ADDRESS
MOV AX, ES: [BX) ;GET # OF CHANNELS
MOV CONV,AX ; SAVE IT
LES BX,DWORD PTR [BP+14) ;GET PHYSAD ADDRESS
MOV AX, ES: [BX) ;GET LOW WORD
MOV PHSAD,AX ;SAVE IT
MOV AX, ES: [BX) +2 ;GET HIGH WORD
MOV PHSADH,AX ;SAVE IT
LES BX,DWORD PTR [BP+18) ;GET DONE ADDRESS
MOV DONEA,BX ;SAVE OFFSET
MOV DONEA+2,ES ;SAVE SEGMENT
LES BX,DWORD PTR [BP+22) ;GET PASS ADDRESS
MOV PASSA, BX · ;SAVE OFFSET
MOV PASSA+2,ES ;SAVE SEGMENT

SET UP INTERRUPT VECTOR

CLI ;DISABLE INTS
;SAVE DS PUSH DS

254

MOV DX,OFFSET ISRP
PUSH cs
POP OS
MOV AL,0AH
MOV AH,25H
INT 21H
POP DS

; ENABLE IRQ2 ON 8259
;

IN AL,21H
AND AL,lllll0llB
OUT 21H,AL
MOV SP,BP
POP BP
STI
RET 20

PULTST ENDP

EQUATES FOR ISRP

PCTRL EQU
DTCOM EQU
DTSTAT
DTDATA
CWAIT EQU
RWAIT EQU
CDMA EQU
CRAD EQU
INTO EQU

307H
2EDH
EQU 2EDH
EQU 2ECH
4
5
lEH
0EH
310H

;GET VECTOR OFFSET

;DS=SEGMENT FOR INT ROUTINE
;INTERRUPT VECTOR#
;SET VECTOR FUNCTION

;SET IT
;RECOVER DS

;GET CURRENT MASK
;RESET IRQ2

;ENABLE INTS
;RETURN

;8255 CONTROL REG
;A/D COMMAND REG

;A/D STATUS REG
;A/D DATA REG

;COMMAND WAIT
;READ WAIT
;A/D DMA COMMAND
;A/D NON-DMA COMMAND
;INT DISABLE ADDRESS

INTERRUPT ROUTINE FOR PULSE TEST

ISRP PROC
CLI
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
MOV
MOV
MOV
IN
TEST
JE
JMP

ISRPA:
JNE
JMP

TEST

ISRPB:
SHL
MOV
CLC

NEAR

AX
BX
ex
DX
DS
ES
AX,DSSAVE
DS,AX
DX,DTSTAT
AL,DX
AL,BOH
ISRPA
DTERR
TEST AL,4
ISRPB
DTERR

FOR PAGE OVER RUN

MOV CX,CONV
CX,l
BX,CX

;NO INTS
;SAVE REGISTERS

;GET DS
;SET IT
;GET STATUS ADDRESS
;GET STATUS

;ERROR'?

;YES EXIT
;COMMAND COMPLETE'?

;NO=ERROR

;GET ii OF CONV
;*2=BYTES
;SAVE FOR DMA

255

ADD CX,PHSAD
JC NODMA

SET DMA

DEC BX
MOV AL,45H
OUT 11,AL
MOV AL,0
OUT 12,AL
MOV AX,PHSAD
OUT 2,AL
MOV AL,AH
OUT 2,AL
MOV AL,BL
OUT 3,AL
MOV AL,BH
OUT 3,AL
MOV AX,PHSADH
OUT 83H,AL
MOV AL,l
OUT 10,AL
MOV AL,CDMA
OUT DX,AL
JMP ISRP2

NON DMA A/D

;ADD TO BASE
;PAGE CROSSING=NO DMA

;BX=2*CONV-1

;SET DMA MODE

;RESET BYTE FLIP FLOP
;GET BASE ADDRESS
;SET LOW BYTE
;AL•HIGH BYTE
;SET HIGH BYTE
;GET CONV
;SET LOW BYTE
;GET HIGH BYTE
;SET IT
;GET PAGE

;SET IT
;ENABLE MASK

;GET START COMMAND
;START
;GO INC PASS+ EXIT

CALCULATE SEGMENT AND OFFSET

NODMA:
MOV
AND
MOV
SHR
MOV
MOV
SHL
OR
MOV
MOV
MOV
OUT
MOV
SHL

ADLP: MOV
ADLPl:

MOV AX,PHSAD
BX,AX
BX,000FH
CL,4
AX,CL
DX,PHSADH
CL,12
DX,CL
AX,DX
ES,AX
DX,DTCOM
AL,CRAD
DX,AL
CX,CONV
CX,1
DX,DTSTAT
IN AL,DX

;GET BASE
;SAVE IT
;BX=OFFSET

;SHIFT OUT OFFSET
;GET PAGE

;PUT PAGE IN UPPER NIBBLE
;AX=SEGMENT
;SET SEGMENT
;GET A/D COMMAND ADDR

;GET COMMAND
;START

;GET# OF CONV
;BYTES=*2
;GET STATUS ADDRESS

;GET STATUS
;BYTE READY?
;NO WAIT

;GET DATA BYTE

TEST
JE
MOV
IN
MOV
INC
LOOP

AL,RWAIT
ADLPl
DX,DTDATA
AL,DX
BYTE PTR ES: [BXJ,AL ;SAVE IT

ISRP2:

BX
ADLP

UPDATE BUFFER ADDRESS

SHL
MOV CX,CONV
CX,1

;POINT TO NEXT LOCATION

;GET CONV
; *2

256

,
ISRPl:

ISRP3:

DNCHK:

CLC
ADD PHSAD,CX
JNC ISRPl
INC PHSADH

;ADD TO BASE

:PAGE=PAGE+l

INCREMENT PASS COUNT AND COMPARE TO MAXP

CLC
ADD
JNC
INC

CMP
JNE
MOV
CMP
JNE

SET
LES
MOV

LES BX,DWORD PTR PASSA ;ES:[BX]=PASS ADDRESS

;PASS=PASS+l WORD PTR ES: [BX], 1
ISRP3
WORD PTR ES: [BX]+2
MOV AX,MAXP
AX,ES: [BX]
DNCHK
AX,MAXPH
AX, ES: [BX] +2
DNCHK

DONE FLAG

;INCREMENT UPPER WORD
;GET MAXP LOW

;LOW WORDS EQUAL
;NO-CHECK FOR DONE
;GET MAXP HIGH

BX,DWORD PTR DONEA :GET DONE ADDR
WORD PTR ES: [BX],0FFFFH ;SET DONE
LES BX,DWORD PTR DONEA

CMP
JE

ISRP4:

WORD PTR ES: [BX],0 ;DONE?
ISRPOT ;NO
MOV DX,INTD ;GET INT DISABLE ADDRESS

OUT DX,AL ;DISABLE INTS
ISRPOT: MOV AL,0

MOV
OUT
INC
OUT

DX,PCTRL ;GET INT FF ADDRESS
DX,AL ;RESET FLIP FLOP
AL
DX,AL ;RE-ENABLE IT

SIGNAL END OF INT TO 8259
MOV AL,20H
OUT 20H,AL

RECOVER REGS AND EXIT
POP ES
POP DS
POP DX
POP ex
POP BX
POP ,AX
IRET ;RETURN

ERROR-SET DONE>0

DTERR: MOV AX, 1
LES BX,DWORD PTR DONEA
MOV WORD PTR ES: [BX],AX
JMP ISRP4

ISRP ENDP
CODE ENDS

END

;GET DONE ADDRESS
;SET DONE

257

RDTAIPD.FOR

$TITLE:'SUBROUTINE RDTAPD'
$STORAGE:2
$NOFLOATCALLS
**

SUBROUTINE RDTAPD (HANDLE, ARRAY, ·WHICH, OFFSET, NSMP, IERR)
**
*

*
*
*

*
*
*
*
*
*
*
*
*
*

This subroutine reads -numerical data from tape. It allows the
calling program to treat the data on tape as if it were contiguous,
instead of the interleaved format that is a_ctually used.

--> HANDLE
<-- ARRAY

--> WHICH

--> OFFSET
<-> NSMP

int*2
real*4

int*2

int*4
int*4

handle for tape file.
array in memory that holds the data read from
the tape.
code for data type. l=slope profile, 2=rut
stuff, 3=profile elevation.
number of samples to skip before lat.

* <-- IERR
*

int*2

number of samples to read. If NSMP is too
large and goes beyond the range of data
existing on tape, the subroutine will reset
NSMP to the number of samples actually read.
error return code. 0=cool.

*
*
*
*
*
*
*
*

Important variables unique to this subroutine:
ABSOFF int*4 number of bytes preceeding the next point.
BUFSIZ int*4 full-words/buffer for the selected data type.
FRSTUN int*4 full-words preceeding lat point in 1st buffer.
ICOUNT int*4 no. of full-words that have been read so far.
LASTUN int*4 total no. of words preceding current buffer.
NBYTES int*4 number of bytes to read next.
NFW int*4 number of full-words to be read.

**
$LARGE:ARRAY

REAL*4 ARRAY (*)
INTEGER*2 HANDLE, WHICH, IERR
INTEGER*4 ABSOFF, OFFSET, NSMP, LASTUN, ICOUNT, NBYTES, NFW,

& FRSTUN, BUFSIZ
$INCLUDE: 'SETCOM'
*
* Set local pointers and size variables. change NSMP if it is too
* large.
*
* WRITE (6,*) 'STARTING IN RDTAPD. HANDLE, WHICH,OFFSET,NSMP=',
* & HANDLE,WHICH,OFFSET,NSMP

IF (WHICH .EQ. 1) THEN
BUFSIZ NPRFFW
FRSTUN = MOD (OFFSET* NCHPRF, NPRFFW)
LASTUN = (OFFSET* NCHPRF / NPRFFW) * NBUFFW
NFW = NSMP * NCHPRF
IF (OFFSET+ NSMP .GT. NSPTOT) NSMP NSPTOT - OFFSET

ELSE IF (WHICH .EQ. 2) THEN
BUFSIZ NRUTFW
FRSTUN = MOD (OFFSET* NCHRUT, NRUTFW)
LASTUN = (OFFSET* NCHRUT / NRUTFW) * NBUFFW + NPRFFW
NFW = NSMP * NCHRUT

258

*

*

IF (OFFSET+ NSMP .GT. NSRTOT) NSMP NSRTOT - OFFSET
ELSE

BUFSIZ NELVFW
FRSTUN = MOD (OFFSET* NCHPRF, NELVFW)
LASTUN (OFFSET* NCHPRF / NELVFW) * NBUFFW + NPRFFW + NRUTFW
NFW = NSMP * NCHPRF
IF (OFFSET+ NSMP .GT. NSRTOT) NSMP = NSRTOT - OFFSET

END IF

ABSOFF = 4 * (LASTUN + FRSTUN)

* Read data from first buffer for case that all data are in first
* buffer
•

IF (FRSTUN + NFW .LE. BUFSIZ) THEN

NBYTES = NFW * 4

* WRITE (6,*) 'IN RDTAPD, FOR CASE OF ONLY 1 BUFFER.'
* WRITE (6,*) 'ABSOFF, NBYTES =',ABSOFF,NBYTES

CALL RDTAPE (HANDLE, ARRAY, ABSOFF, NBYTES, IERR)

* WRITE (6,*) 'ARRAY RETURNED:'
* WRITE (6,*) (ARRAY(I),I=l,NSMP)

RETURN
END IF

•
• Read data from first buffer for case that the data continue into
* the next buffer
•

*

NBYTES = (BUFSIZ - FRSTUN) * 4
CALL RDTAPE (HANDLE, ARRAY, ABSOFF, NBYTES, IERR)
ICOUNT = BUFSIZ - FRSTUN

* Loop to read data from the rest of the buffers. Check each time
* for end of data.
*

*

30 CONTINUE
LASTUN = LASTUN + NBUFFW
ABSOFF = LASTUN * 4
IF (ICOUNT + BUFSIZ .LE. NFW) THEN

NBYTES = NBUFFW * 4
CALL RDTAPE (HANDLE, ARRAY (ICOUNT + 1), ABSOFF, NBYTES, IERR)
!COUNT= ICOUNT + BUFSIZ
GO TO 30

END IF

* Last buffer.
*

NBYTES = (NFW - ICOUNT) * 4
CALL RDTAPE (HANDLE, ARRAY (ICOUNT + 1), ABSOFF, NBYTES, IERR)
RETURN
END

259

RDWRT APE.FOR

$TITLE:'READ & WRITE TAPE ROUTINES'
$STORAGE:2
$NOFLOATCALLS
C Subroutine for reading binary data from tape or disk file
C --> HANDLE INT*2 file handle
C <-- ARRAY INT*2 destination array for data
C --> OFFSET INT*4 Offset into file O=start
C --> NBYTES INT*4 number of bytes to read
C <-- IER INT*2 error return 0=no error

SUBROUTINE RDTAPE(HANDLE,ARRAY,OFFSET,NBYTES,IER)

$INCLUDE: 'HANDLES'
$LARGE: ARRAY

INTEGER*4 NBYTES,LBYTES,IO,IP,II,NBUF,I
INTEGER*2 ARRAY(*),IER

* WRITE (6,*) 'JUST INTO RDTAPE. HANDLE, OFF, NBYTES=',
* & HANDLE, OFFSET, NBYTES

C ADD SETUP BYTES TO OFFSET
I0=2048+OFFSET
METHOD=O

C POSITION FILE
CALL HPOS(HANDLE,METHOD,IO,IP,IER)
IF(IER .NE. 0)RETURN

C CALCULATE HOW MANY 32768 BYTE BUFFERS TO READ
BYTES=32768
LBYTES=MOD(NBYTES,BYTES)
NBUF=NBYTES/BYTES
IF(LBYTES .NE. 0)THEN

NBUF=NBUF+l
ELSE

LBYTES=BYTES
ENDIF

C READ DATA
DO 100 I=l,NBUF
IF(I .EQ. NBUF)BYTES=LBYTES
II=l+(I-1)*16384
CALL HREAD(HANDLE,ARRAY(II),BYTES,RBYTES,IER)
IF(IER .NE. O)RETURN

100 CONTINUE

$PAGE

RETURN
END

260

C Subroutine for writing binary data to tape or disk file
C --> HANDLE INT*2 file handle
C --> ARRAY INT*2 source array for data
C --> OFFSET INT*4 Offset into file 0=start
C --> NBYTES INT*4 number of bytes to write
C <-- IER INT*2 error return 0=no error

SUBROUTINE WRTAPZ(HANDLE,ARRAY,OFFSET,NBYTES,IER)

$INCLUDE:'HANDLES'
$LARGE: ARRAY

INTEGER*4 NBYTES,LBYTES,IO,IP,II,NBUF,I
INTEGER*2 ARRAY(*),IER

C ADD SETUP BYTES TO OFFSET
IO=2048+OFFSET
METHOD=O

C POSITION FILE
CALL HPOS(HANDLE,METHOD,IO,IP,IER)
IF(IER .NE. 0)RETURN

C CALCULATE HOW MANY 32768 BYTE BUFFERS TO WRITE
BYTES=32768
LBYTES=MOD(NBYTES,BYTES)
NBUF=NBYTES/BYTES
IF(LBYTES .NE. 0)THEN

NBUF=NBUF+l
ELSE

LBYTES=BYTES
ENDIF

C READ DATA
DO 100 I=l,NBUF
IF(I .EQ. NBUF)BYTES=LBYTES
II=l+(I-1)*16384
CALL HWRITE(HANDLE,ARRAY(II),BYTES,RBYTES,IER)
IF(IER .NE. 0)RETURN

100 CONTINUE

RETURN
END

261

RDWRTSET.FOR

$STORAGE:2 , /
$NOFLOATCALLS

SUBROUTINE RDSET

$INCLUDE:'SETCOM'
C
C READ IN SETUP FROM DRIVE C (BUBBLE)
C

OPEN(9,FILE='SETUP.SET',ACCESS='DIRECT',FORM='BINARY',RECL=2048)
READ(9,REC=l)SET
CLOSE (9)
RETURN
END

262

SUBROUTINE WRTSET

$INCLUDE:'SETCOM'

C WRITE SETUP ARRAY TO SETUP FILE

OPEN(9,FILE='SETUP.SET',ACCESS='DIRECT',FORM='BINARY',RECL=2048)
WRITE(9,REC=l)SET
CLOSE(9)
RETURN
END

263

SUBROUTINE UPDSET (HANDLE)

*
*

This updates the setup info for a file using its handle.

$INCLUDE:'HANDLES'
$INCLUDE: 'SETCOM'

BYTES= 2048
OFFSET= 0
METHOD= 0
CALL HPOS (HANDLE, METHOD, OFFSET, POINTER, IER)
IF (IER .NE. 0) RETURN .
CALL HWRITE (HANDLE, SET, BYTES, RBYTES, IER)
RETURN .

END

264

RUTCMP.FOR

$TITLE:'SUBROUTINE RUTCMP'
$NOFLOATCALLS
$STORAGE:2
$LARGE: HL, HC, HR, RUT

SUBROUTINE RUTCMP (HL, HC, HR, NCHRAW, NS, RUT, NCHRUT, TRIM,
& GAINL, GAINC, GAINR, ZL, ZC, ZR, HLLAT, HRLAT)

* Subroutine to compute, average, and decimate a rut-depth signal.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

-->
-->
-->
-->

-->
<--
-->
-->
-->
-->
-->
-->
-->
-->
-->

HL int*4
HC int*2
HR int*2
NCHRAW int*2

NS int*4
RUT real*4
NCHRUT int*4
TRIM int*4
GAINL real*4
GAINC real*4
GAINL real*4
ZL real*4
zc real*4
ZR real*4
HLLAT real*4

2-D array with left-hand height signal.
2-D array with center (in rut) height signal.
2-D array with right-hand height signal.
number of raw data channels. (HL, HC, HR are
channels in the same 2-D array. l
number of samples before decimation.
2-D array for output rut-depth signal.
number of channels in output array.
decimation ratio.
gain for left-hand height signal.
gain for center height signal.
gain for right-hand height signal.
height of L. height sensor when it reads zero.
height of c. height sensor when it reads zero.
height of R. height sensor when it reads zero.
lateral distance between L. and C. sensors.

*

--> HRLAT real*4 lateral distance between R. and C. sensors.

*

10

20

INTEGER*2 HL(*), HC(*), HR(*)
INTEGER*4 NCHRAW, NCHRUT, NS, TRIM, IL, IR, IC, !RUT, I, J
REAL GAINL, GAINC, GAINR, ZL, ZC, ZR, RUT (*), SUM, HLLAT,

& HRLAT, CL, CR

CL HRLAT I (HLLAT + HRLAT)
CR~ HLLAT I (HLLAT + HRLAT)
IL= l
IC l
IR = l
!RUT 1
ZERO CL* ZL + CR * ZR - zc
GL GAINL / TRIM * CL
GC = GAINC / TRIM
GR= GAINR / TRIM * CR
DO 20 I 1, NS, TRIM

SUM= 0
DO 10 J = 1, TRIM

SUM• SUM+ GL * HL (IL) + GR * HR (IR) - GC * HC (IC)
IL IL + NCHRAW
IC• IC + NCHRAW
IR= IR + NCHRAW

CONTINUE
RUT (!RUT) = SUM - ZERO

IRUT =!RUT+ NCHRUT
RETURN

265

END

266

SETSTM.FOR

$TITLE: 'SETSTM'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE SETSTN

* This subroutine calculates coefficients for the
* matrix used in the IRI quarter-car simulation.
* MINV, a matrix inversion subroutine.

state-transition
It requires

REAL*4 A(4,4), Al(4,4), A2(4,4), MIN1(4), MIN2(4),

& Kl, K2, MU, C
$INCLUDE:'SETCOM'
*

*

DATA Kl, K2, MU, C /653., 63.3, .15, 6./
DT = DELTAX * SCLFDX / 80. * 3.6

* Put 1/4 car model parameters into the A Matrix

*

*
*
*
*

DO 60 J = 1, 4
DO 50 I• 1, 4

A (I, J) - 0
Al(I,J) - 0

50 STM(I,J) - 0
Al(J,J) = 1.

60 STM(J,J) = 1.
A(l,2) = 1.
A(3, 4) = 1.
A(2, 1) = -K2
A(2,2) - -c
A(2, 3) = K2
A (2, 4) C
A(4, 1) = K2 / MU
A(4,2) • C I MU
A(4, 3) =-(Kl+ K2) / MU

70 A(4, 4) = -c I MU

CALCULATE STATE TRANSITION MATRIX - STM=EXP(A*DT) -
VIA A TAYLOR SERIES EXPANSION.

ITER = 0
80 ITER = ITER + 1

ISTOP"' 1
DO 110 J = 1, 4

DO 100 I= 1, 4
A2(I,J) = 0
DO 90 II = 1, 4

90 A2(I,J) = A2(I,J) + Al(I,II) * A(II,J)
100 CONTINUE
110 CONTINUE

DO 130 J = 1, 4
DO 120 I= 1, 4

Al(I,J) • A2(I,J) * DT / ITER
IF (STM(I,J) + Al (I,J) .EQ. STM(I,J)) GO TO 120
ISTOP = 0

267

*

STM(I,J) = STM(I,J) + Al(I,J)
120 CONTINUE
130 CONTINUE
140 CONTINUE

IF (ISTOP .EQ. 0) GO TO 80

* CALCULATE PARTICULAR RESPONSE MATRIX: PRM=A**-l*(STM-I)*B
*

*

150 CONTINUE
DO 170 J = 1, 4

DO 160 I= 1, 4
160 A2(I,J) = A(I,J)
170 CONTINUE

* USE IBM MATRIX INVERSION SUBROUTINE (SSP LIBRARY)
*

CALL MINV (A2, 4, DET, MINl, MIN2)
DO 190 I= 1, 4

PRM(I) ~ -A2(I,4)
DO 180 J = 1, 4

180 PRM(I) = PRM(I) + A2(I,J) * STM(J,4)
190 PRM(I) = PRM(I) *Kl/ MU
200 CONTINUE

RETURN
END

268

SETUP.FOR

$TITLE: I SETUP I

$STORAGE:2
$NOFLOATCALLS

SUBROUTINE SBTUPS

CHARACTER*l6 FN
LOGICAL*2 !EXIST
CHARACTER*l DRIVE
CHARACTER*3 EXT
INTEGER*2 CP(7),PAGE,PAGMAX,ROW,COL
CHARACTER*S FMT(7)

$INCLUDE:'SETCOM'

C

9000

9010

9020

C

9030

100

200

PRINT SETUP TO SCREEN

CALL SETCUR(2,0)
WRITE(*,9000)
FORMAT ('CHAN ID

1 'OFFSET AT AMPLIFIER
CALL SETCUR(3,0)
WRITE(*,9010)

UNITS TYPE TRANSDUCER AMPLIFIER',
FULL'\)

FORMAT(' f',30X,'GAIN',5X,'GAIN(NOM) ZERO VOLTS GAIN(ACT) ',
1 SCALE'\)

CALL SETCUR(4,0)
WRITE(*,9020)
FORMAT('****',1X,'********',2X, '********',2X,'**** **********',lX,

1 '*********',' ********** ********* *******'\)

WRITE OUT CURRENT VALUES

DO 100 I=l,9
CALL SETCUR(I+5,0)
J=I-1
FSC=GAIN(I)*2048
WRITE(*,9030)J,CHID(I),UNITS(I),XDUCT(I),XDUCGN(I),AMPGN(I),

1 OFFS(I),AMPGA(I),FSC
FORMAT(lX,Il,3X,A8,2X,A8,3X,Il,3X,F9.5,2X,F8.4,2X,F9.5,2X,F8.4,

1 2X,F7.4\)
CONTINUE
PAGE=l
PAGMAX=l
I=l
J=l
CP(l)=5
CP(2)=15
CP (3) =26
CP(4)=30
CP(5)=41
CP(6)=51
IMAX=9
JMAX=6
ROW=5+I
COL=CP(J)

269

IF(J .EQ. l)THEN
CALL GETSTR(CHID(I),8,ROW,COL,IRET)

ELSE IF (J .EQ. 2)THEN
CALL GETSTR(UNITS(I),8,ROW,COL,IRET)

ELSE IF (J .EQ. 3)THEN
CALL GETI(XDUCT(I),O,l,ROW,COL,l,'(Il\) ',IRET)

ELSE IF(J .EQ. 4)THEN
CALL GETR(XDUCGN(I),-10000.,10000.,ROW,COL,9,' (F9.5\) ',IRET)

ELSE IF(J .EQ. S)THEN
CALL GETR(AMPGN(I),0.001,2000.,ROW,COL,8,' (F8.4\) ',IRET)

ELSE IF (J .EQ. 6)THEN
CALL GETR (OFFS (I) , -10000., 100 00., ROW, COL, 9, 1 (F9. 5 \) ', IRET)

ELSE
ENDIF
IF (IRET .EQ. 9) GOTO 1000
CALL RETPRO(IRET,J,I,JMAX,IMAX,PAGE,PAGMAX)
GOTO 200

1000 CONTINUE
CALL WRTSET
RETURN
END

270

SIGSUBS.FOR

$TITLE: 1 FUNCTION RAVE'
$NOFLOATCALLS
$STORAGE:2
**

FUNCTION RAVB (ARRAY, NCH, NS)

* Function
*
* '<-- RAVE
* --> ARRAY
* --> NCH
* --> NS
*
$LARGE:ARRAY

to compute average value of

real*4 average value of
real*4 2-D input array.
integer*4 1st dimension (#
integer*4 2nd dimension (#

INTEGER*4 NCH, NS, I, J
REAL*4 ARRAY(*)
REAL*S SUMS
I -= 1
SUMS = 0
DO 10 J = 1, NS

SUMS = SUMS + ARRAY (I)
10 I= I+ NCH

RAVE= SUMS/ NS
RETURN
END

$PAGE

271

signal in real*4 array.

channel-1 in ARRAY.
Channel 1 is processed.

of channels) for ARRAY.
of samples) for ARRAY.

$TITLE: 'SUBROUTINE DEBIAS'
**

SUBRO:UTINE DBBIAS (ARRAY, NCH, NS, BIAS)

* Subroutine to remove bias from signal in real*4 array.
*
* <-> ARRAY real*4 2-D array. Channel 1 is processed.
* --> NCH integer*4 1st dimension (# of channels) for ARRAY.
* --> NS integer*4 2nd dimension (# of.samples) for ARRAY.
* --> BIAS rea1*4 bias to be sutracted from channel-1 in
*
$LARGE: ARRAY

INTEGER*4 NCH, NS, I, J
REAL*4 ARRAY(*)
I = 1
DO 10 J = 1, NS

ARRAY (I) = ARRAY (I) - BIAS
10 I= I+ NCH

RETURN
END

$PAGE

272

ARRAY.

$TITLE:'FUNCTION IAVE'
**

FUNCTION IAVZ (ARRAY, NCH, NS)
i******************~*****
* Function to compute average value of signal in integer*2 array.
*
* <-- IAVE integer*2 average value of
* --> ARRAY integer*2 2-D input array.
* --> NCH integer*4 1st dimension (#
* --> NS integer*4 2nd dimension (#
*
$LARGE:ARRAY

INTEGER*2 ARRAY(*), IAVE
INTEGER*4 SUM4, NCH, NS, I, J
I = 1
SUM4 = 0
DO 10 J = 1, NS

SUM4 = SUM4 + ARRAY (I)
10 I= I+ NCH

$PAGE

IAVE = SUM4 / NS
RETURN
END

273

channel-! in ARRAY.
Channel 1 is processed.

of channels) for ARRAY.
of samples) for ARRAY.

$TITLE:'SUBROUTINE AVEVEL'
*********,**********************************~**************************

SUBROUTINE AVEVEL (IBUF, NCl, NS, RBUF, NC2, TRIM, GAIN, BIAS)

* Subroutine to average and decimate a (speed) signal.
*
*
*
*

-->
-->
-->
<--
-->
-->

IBUF
NCl
NS
RBUF
NC2
TRIM

integer*2
integer*4
integer*4
real*4
integer*4
integer*4

2-D input array.
1st dimension (#
2nd dimension (#
2-D output array.
1st dimension (#
decimation ratio.

Channel 1 is processed.
of channels) for IBUF.
of samples) for IBUF.

Channel 1 is processed.
of channels) for RBUF.

Every TRIM-th point is kept.

*
*
*
*
*
*

--> GAIN real*4 gain for input data: engineering units/count.
--> BIAS real*4 bias in input data.

$LARGE: IBUF,RBUF
INTEGER*2 IBUF(*)
INTEGER*4 NCNCR, NS, SUM, I, Il, 12, J, TRIM, NCl, NC2
REAL*4 RBUF(*), BIAS, GAIN, GT

*
GT GAIN/ TRIM
11'" 1
12 1
DO 20 I 1, NS, TRIM

SUM= 0
DO 10 J = 1, TRIM

SUM SUM+ IBUF (Ill
10 Il = Il + NCl

RBUF (12) =SUM* GT - BIAS
20 12 = 12 + NC2

RETURN
END

$PAGE

274

$TITLE:'SUBROUTINE PRFELV'
**

SUBROUTINE_PRl'BLV (BUFl, NCl, NS, BUF2, NC2, TRIM, DX, C,
& ENDELV)

* Subroutine to compute compressed elevation profile from slope.
*
* --> BUFl real*4 2-D input array. Channel 1 is processed.
* --> NCl integer*4 1st dimension (# of channels) for BUFl.
• --> NS integer*4 2nd dimension (# of samples) for BUFl.
* <-- BUF2 rea1•4· 2-D output array. Channel 1 is processed.
* --> NC2 integer*4 1st dimension (# of channels) for BUF2.
* -·-> TRIM 'integer*4 decimation ratio. Every TRIM-th point is kept.
* --> DX real*4 sample interval for BUFl
* --> C real*4 coefficient to add high-pass filtering to
* the integration.
* <-> ENDELV real*4 as input, starting elevation at beginning .o.f
* buffer. as output, elevation at end of buffer.
*
$LARGE:BUF1, BUF2

REAL*4 BUFl(*), BUF2(*), DX, C, ENDELV
INTEGER*4 NS, I, Il, I2, NCl, NC2, TRIM, J

•
*
*

Integrate slope backwards.

Il = (NS - 1) * NCl + 1
12 = (NS/ TRIM -_1) * NC2 + 1
DO 20 I= 1, NS, TRIM

DO 10 J = 1, TRIM
ENDELV = ENDELV * C +DX* BUFl (Il)

10 Il = Il - NCl
BUF2 (12) = ENDELV

20 12 = 12 - NC2
RETURN
END

$PAGE

275

$TITLE:'SUBROUTINE HIPASS'
**

SUBROUTINE RIPASS (ARRAY, NCH, Nl, N2, N3, N4, NS, MOVAVl,
& MOVAV2)

**
* This subroutine filters a signal with a hi-pass filter. It is
* based on the MTS subroutine HILOF, and customized for a variable
* initilazation and ending section.
*
* <-> ARRAY
*

real*4 2-D Input array. Channel 1 is filtered.
This array must be dimensioned to cover (Nl +
(N2 + N3 + N4 +NS+ MOVAVl + 1) samples. *

*
*
*
*
*

The input data should start at the second
position and continue
to the end of the array. The output
starts at the first position, and continues
to the N3-th position.

* --> NCH integer*4
integer*4

1st dimension of ARRAY. (# of channels.)
* --> Nl-NS no. of samples in five contiguious regions of

memory. *
*
*
*

--> MOVAVl integer*4
--> MOVAV2 integer*4

no. of points in moving average,
no. of points to center of moving average
(MOVAVl / 2) 1

**
$LARGE: ARRAY

INTEGER*4 MOVAVl, MOVAV2, NCH, Nl, N2, N3, N4, NS,, I, Il, 12,
& Ml, M2, N

REAL*4 ARRAY (*), SCMl
*
* Create artificial points to start the moving average if Nl > 0.
*

*

IF (Nl .GT. 0) THEN
N = MOVAVl - Nl
IF (N .LT. N2 + N3 + N4) N = N2 + N3 + N4
CALL LRSLOP (ARRAY ((Nl + 1) *NCH+ 1), NCH, N, SLOPE)
Il = 1 + Nl * NCH
12 = I1 + NCH
DO 10 I= 1, Nl

ARRAY (Il) = ARRAY (12) - SLOPE* I
Il = Il - NCH

10 CONTINUE
END IF

* Create artificial points to finish the moving average if NS> 0.
*

IF (NS .GT. 0) THEN
N = MOVAVl - MOVAV2 - NS
IF (N .LT. N2 + N3 + N4) N = N2 + N3 + N4
CALL LRSLOP (ARRAY ((1 + Nl + N2 + N3 + N4 - N) * NCH

& + 1), NCH, N, SLOPE)
12 1 + (Nl + N2 + N3 + N4) * NCH
Il I2 + NCH
DO 20 I= 1, NS

ARRAY (Il) ~ ARRAY (I2) +SLOPE* I
Il = I1 + NCH

20 CONTINUE
END IF

276

* * Initialize moving average.
*

*

ARRAY (1) = 0
Il = 1

· DO 40 I=l, MOVAVl
Il = Il + NCH
ARRAY (1) = ARRAY (1) + ARRAY (Il)

40 CONTINUE
ARRAY (1) = ARRAY (1) / MOVAVl

* Filter signal.
*

*

Il = 1
I2 = I1 + NCH
SCMl = 1. / MOVAVl
Ml= MOVAVl.* NCH
M2 = MOVAV2 * NCH

DO 50 I= 2, N3
ARRAY (I2) = ARRAY (Il) + SCMl * (ARRAY (I2 + Ml) -

& ARRAY (I2))
ARRAY (Il) = ARRAY (I2 + M2) - ARRAY (Ill
I1 = I2
I2 = I2+·NcH

50 CONTINUE

$PAGE

ARRAY (Il) = ARRAY. (I2 + M2) - ARRAY (Il) .
RETURN
END

277

$TITLE:'SUBROUTINE LRSLOP'
**

SUBROUTINE LRSLOP (ARRAY, NDIM, NSAMP, SLOPE)
**
* Calculate slope of signal using a linear regression.
*
* by Mike Sayers, last modified June 27, 1986.
*
* --> ARRAY real*4 2-D Input array.
* --> NDIM integer*4 1st dimension of ARRAY. (# of channels.)
* --> NSAMP integer*4 2nd dimension of ARRAY. (# of samples.)
* <-- SLOPE real*4 Slope of channel 1 in ARRAY as obtained by
* linear regression.
**
$LARGE:ARRAY

*

*

DIMENSION ARRAY (*)
INTEGER*4 NDIM, NSAMP, I, J
REAL*B SUMX, SUMXY, SUMY, SUMX2, X, Y
SUMXY=0
SUMX = 0
SUMX2 = 0
SUMY = 0
SLOPE= 0
IF (NSAMP .LT. 2) RETURN

I = 1
DO 10 J = 1, NSAMP

X'= J
Y = ARRAY (I)
SUMX = SUMX + X
SUMXY = SUMXY + X * Y
SUMX2 = SUMX2 + X * X
SUMY = SUMY + Y
I = I + NDIM

10 CONTINUE

SLOPE= (NSAMP * SUMXY - SUMX * SUMY) / (NSAMP * SUMX2 -
& SUMX * SUMX)

RETURN
END

278

START AD.FOR

$TITLE:'START A/D'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE STARTAD(IITY,FF,BUFST,BUFT,BUFFCNT,MAXB,
l ADCURB,DONE,INDEX)

$INCLUDE:'BUFCOM'
$INCLUDE:'SETCOM'
$INCLUDE:'ADINSERT'
$INCLUDE:'IOPARMS'

INTEGER*4 II,JJ,QQ
INTEGER*2 OA(2),Ql(2),LOW,HIGH,AD(5),DM(5)
EQUIVALENCE(JJ,QA), (QQ,Ql)
CHARACTER*l BP

C INDICATE BUFFERS ARE EMPTY
NBUF=l5
DO 10 I=l,NBUF

10 BUFST(I)=0

C INITIALIZE FLAGS AND COUNTERS
DONE=0
ADCURB=0
BUFFCNT=0
II=0
INDEX=0

C CALCULATE BEGINNING OF BUFFERS SO THAT THERE ARE NO
C PAGE OVERUNS

C GET PHYSICAL ADDRESS OF IBUF-PUT OFFSET IN 00
CALL PHYSAD(IBUF(l),J'J)
Ql (1) =QA(l)
01(2)=0
II-=JJ

C USE MAXIMUM BUFFER SIZE OF 16384 BYTES
MBUFSIZ=l6384

C CALCULATE ACTUAL BYTES PER BUFFER
NSAMP=MBUFSIZ/(NCHAN*2)
IF (MOD(NCHAN,2) .EQ. 0)NSAMP=NSAMP-1
BYTB=NSAMP*NCHAN*2

J=0
IF(QQ .EO. 0) GOTO 100
IF(OQ .GT. 49152)THEN
QA(2)sQA(2)+1
QQ=0
ELSE IF (QQ .GT. 32768)THEN
QQ=49152
ELSE IF (QQ .GT. 16384)THEN
QQ=32768

279

ELSE
QQ=l6384
ENDIF

100 QA(l)=Ql(l)
INDEX=(JJ-II)/2+1

C . PUT PHYSICAL ADDRESS INTO BUFFER TABLE
DO 200 I=l,NBUF
BUFT(I)=(I-1)*16384 +JJ'

200 CONTINUE

DO 210 I=2,NBUF
210 BUFT(I)=BUFT(I)+l

C RESET A/D CLOCK CIRCUITRY
CALL IOUTB(2,CNTRL)
M=8
L=#OOFF
BYTB=BYTB-1

C SETUP A/D AND OMA CONTROLLER

AD(l)=l
AD(2)=ADSTRT
AD(3)sADSTOP
AD(4)=NCHAN
AD(S)=-0
DM(l)=IAND(QA(l),L)
DM(2)=ISHFTR(QA(l),M)
DM(3)=IAND(BYTB,L)
DM(4)=ISHFTR(BYTB,M)
DM(5)=QA(2)
CALL SETDMA(DM)
CALL SETAD(AD)

C START A/D -THEN WAIT .1 SEC
CALL PWAIT(DTSTAT,CWAIT,0)
CALL IOUTB(f7E,DTCOM)
CALL TWAIT (.1)

C SET UP COUNTERS BUT DON'T START COUNTER fl

C DISARM ALL
CALL IOUTB(#SF,TIMERC)

C POINT TO COUNTER 1.
CALL IOUTB(l,TIMERC)

C SET MODE
LOW=IAND(IDMODE,L)
HIGH=ISHFTR(IDMODE,M)
CALL IOUTB(LOW,TIMERD)
CALL IOUTB(HIGH,TIMERD)

C SET DIVISOR
LOW=IAND(IDIV,L)
HIGH=ISHFTR(IDIV,M)
CALL IOUTB(9,TIMERC)
CALL IOUTB(LOW,TIMERD)

280

/

CALL IOUTB(HIGH,TIMERD)

C SET UP COUNTER 42 FOR 25.3868 KHZ FOR A/D CLOCK

C POINT TO COUNTER 2 MODE REGISTER
CALL IOUTB(2,TIMERC)

C SET MODE=40B22
CALL IOUTB(422,TIMERD)
CALL IOUTB(#0B,TIMERD)

C DIVIDE BY 47
CALL IOUTB(#0A,TIMERC)
CALL IOUTB(47,TIMERD)
CALL IOUTB(0,TIMERD)

C SET UP COUNTER 3 TO COUNT OUT2 BY NCHAN

C POINT TO COUNTER 3 MODE REGISTER AND SET MODE=D3A5
CALL IOUTB(3,TIMERC)
CALL IOUTB(#A5,TIMERD)
CALL IOUTB(4D3,TIMERD)

C POINT TO COUNTER 3 LOAD REGISTER AND SET=NCHAN
CALL IOUTB(#0B,TIMERC)
CALL IOUTB(NCHAN,TIMERD)
CALL IOUTB(0,TIMERD)

C SET UP COUNTER 4 TO COUNT SAMPLES TO NSAMP

C POINT TO COUNTER 4 MODE REGISTER AND SET=41421
CALL IOUTB(4,TIMERC)
CALL IOUTB(t21,TIMERD)
CALL IOUTB(414,TIMERD)

C POINT TO LOAD REGISTER AND SET=NSAMP*NCHAN
I=NCHAN*NSAMP
LOW=IAND (I, L)
HIGH=ISHFTR(I,M)
CALL IOUTB(40C,TIMERC)
CALL IOUTB(LOW,TIMERD)
CALL IOUTB(HIGH,TIMERD)

C SET AND START FILTER CLOCK(COUNTER 5)
CALL FILCLK(FF)

C LOAD AND ARM COUNTER 2,3,AND 4
CALL IOUTB(t6E,TIMERC)

C SETUP INTERRUPT SOFTWARE
NBUF=NBUF-1
CALL ADSET(ADCURB,BUFT,BUFST,NBUF,BYTB,MAXB,BUFFCNT,DONE)

C WAIT FOR KEY
CALL KCLEAR

300 I=IGKEY ()
IF(I .EQ. 0)GOTO 300

C IF THIS IS A BOUNCE TEST WAIT 10 SECS THEN BEEP· THEN .START
IF(IITY .EQ. l)THEN

281

CALL TWAIT (10.)
BP=CHAR(7)
WRITE (*, I (A\) I) BP
ENDIF

C START A/D
CALL IOUTB(7,CNTRL)
CALL IOUTB(6,CNTRL)
CALL IOUTB(3,CNTRL)

C ENABLE INTERRUPTS
CALL IOUTB(l,CNTRL)
CALL IOUTB(0,INTE)

C START COUNTER 1
CALL IOUTB(#61,TIMERC)

1000 RETURN
END

282

TEST.FOR

$TITLE: 1 TEST 1

$STORAGE:2
$NOFLOATCALLS

SUBROUTINE TZST(IITY)

C IITY=TEST TYPE
C 0=NORMAL TEST
C l=BOUNCE TEST
$INCLUDE:'BUFCOM'
$INCLUDE:'STATCOM'
$INCLUDE:'SETCOM'
$INCLUDE:'ADINSERT'
$INCLUDE:'IOPARMS'
$INCLUDE:'HANDLES'

INTEGER*2 PAGE,PAGMAX,CP(l2),ROW,COL,ISTAT(3)
INTEGER*2 WRB,WRBL,WR.TCNT
INTEGER*4 JJ,JL,JK,ADDRF(l5),ADDRL(l5),IO,IP,BSTRT(l5),NRAWFW
INTEGER*4 BYNEED,BYAV,MAXSAMP,BBB,CLUSA,CLUST,SECTOR,EXBUF
LOGICAL*2 IEXIST,WRT
CHARACTER*B FN
CHARACTER*l DR
CHARACTER*3 EXT
CALL CLRSCR

C SET PARAMETERS FOR PROCESSING
PASSA=0
TRIM=l0
LNGWAV=50.
SCLFA=9. 805
SCLFDX=.304B
SCLFH=.0254
SCLFV=.44703
SCLFRI=5280.
HlLAT=27.0625
H3LAT=27.6B75
H4LAT=0.
H5LA'l'=0.
TSTTYP=IITY

C CHECK TO SEE IF THERE IS A TAPE LOADED
10 IF(TINIT .EQ. 0)THEN

CALL SETCUR(l0,O)
WRITE(*,' (A\)') 'THERE IS NO TAPE LOADED --PLEASE LOAD A TAPE'
CALL WAITKY
CALL LOADT
ENDIF
CALL CLRSCR
CALL FNMAKE(DR,FN,EXT,TFILE,l)
IF(IITY .EQ. 0)THEN
EXT='DTA'
ELSE
EXT='BNC'
ENDIF
CALL FNMAKE(DR,FN,EXT,TFILE,0)

283

C GET DATE AND TIME
CALL GDATE(IYR,IM,IDAY)
CALL GTIME(IH,IMIN,ISEC)

C BLANK OUT COMMENT
CALL BLANK(CMT,64)

C WRITE TEST DISPLAY
CALL TSTDIS
PAGE=l
PAGMAX=l
I"'l
IMAX=6
J=l
JMAX=2

100 CALL CLRLIN(23)
IF(I .EQ. l)THEN
CALL FNMAKE(DR,FN,EXT,TFILE,l)
CALL GFILE(DR,FN,EXT,IEXIST,S,12,IRET)

IF(IEXIST)THEN
CALL INERROR('FILE ALREADY EXISTS',19)
GOTO 100

ELSE
CALL FNMAKE(DR,FN,EXT,TFILE,0)

ENDIF
ELSE IF (I .EQ.2)THEN

CALL GETSTR(CMT,64,6,9,IRET)
ELSE IF (I .EQ.3)THEN

IF (J .EQ. l)THEN
CALL GETSTR(ROUTE,16,8,7,IRET)
ELSE
CALL GETI (TSTSPD, 10, 55, 8, 52, 2, ' (12\ l ', IRET)
ENDIF

ELSE IF (I .EQ.4)THEN
IF(J .EQ. l)THEN
CALL GETSTR(DIRECT,8,9,10,IRET)
ELSE
CALL GETR(MAXLEN,.1,20.,9,60,4, '(F4.1\) ',IRET)
ENDIF

ELSE IF (I .EQ.5)THEN
IF(J .EQ. l)THEN
CALL GETSTR(LANE,12,10,5,IRET)
ELSE
CALL GETR (SAMP, . 01, 4., 10, 57, 4, '(F4 .2\) ', IRET)
ENDIF

ELSE IF (I .EQ.6)THEN
IF(J .EQ. l)THEN
CALL GETSTR(SURF,16,11,13,IRET)
ELSE
CALL GETSTR(OPER,16,11,49,IRET)
ENDIF

ELSE
ENDIF
IF (IRET .EQ. 9)GOTO 300
CALL RETPRO(IRET,J,I,JMAX,IMAX,PAGE,PAGMAX)
IF(I .LT. 3 .AND. J .EQ. 2)THEN

I--I+l

284

J•l
ENDIF
GOTO 100

300 CONTINUE

IF(IITY .EQ. 0)THEN

C NORMAL TEST--OO DISTANCE BASED SAMPLING
O•12.0/SAMP
IOIV•NINT(D/XDUCGN(9))
IDMODE•t0221

C SET FILTER FREQUENCY TO 1/3 OF NOMINAL SAMPLING FREQUENCY
FF•SAMP*88.0/60.0*TSTSPD/3.0

C COMPUTE DELTAX IN METERS
DELTAX•IDIV*XDUCGN(9)/12.0
DXTRIM•DELTAX*TRIM
Tl•DELTAX

C SET QUARTER CAR MATRIX
CALL SETSTM

C CALCULATE MAXIMUM TEST LENGTH
MAXSAMP•52B0.*MAXLEN/DELTAX
EXBUF•0
NRSAMP•(MAXSAMP-1)/TRIM
NRUTFW•NRSAMP*NCHRUT
NRAWFW•NCHAN*MAXSAMP/2 +2+.5
MAXBUF•NRAWFW+NRUTFW
IF(MAXBUF .GT. MXBFSZ)EXBUF•l6

C .'

ELSE
C TIME BASED SAMPLING

EXBUF•0
MAXSAMP•4096
Fl•4096./20.
FF•Fl/3
D•2.0*l.193182E6/Fl
IDIV•NINT(D)
IOMODE•t0B21
Tl•IDIV*.4190477E-6

ENDIF

NPTS•l6384/(NCHAN*2)
IF(MOD(NCHAN,2) .EQ. 0)NPTS•NPTS-1
M•NPTS*NCHAN*2-l
BYTES•M+l

C CALCULATE THE MAXIMUM NUMBER OF BUFFERS
MAXB•MAXSAMP/NPTS
IF(MOD(MAXSAMP,NPTS) .NE. 0)MAXB•MAXB+l

C CALCULATE THE t OF DISK BYTES NEEDED
BYNEED•l6384*(MAXB+EXBUF)+2048 ·

C CHECK FOR ROOM ON THE TAPE

285

DR=TF ILE (1: 1)
IDR=ICHAR(DR)-64

305 CALL DFREE(IDR,CLUSA,CLUST,BBB,SECTOR)
BYAV=l.0*CLUSA*BBB*SECTOR
IF (BYAV .LT. BYNEED)THEN
CALL SETCUR(l6,0)
WRITE(*,9010)MAXLEN,DR

9010 FORMAT('A TEST OF ,,.F4.1,' MILES WILL NOT FIT ON DRIVE ',Al\)
CALL SETCUR(17,0)
WRITE(*,9020)

9020 FORMAT('DO YOU WANT TO GO TO THE NEXT DRIVE? '\)
CALL GCUR(IR,IC)
IANS=l
CALL YESNO(IANS,IR,IC,IRET)
IF (IANS .EQ. O)GOTO 10

IF(DR .EQ. 'F')THEN
CALL SETCUR(18,0)
WRITE(*,' (A\)') 1 THE TAPE IS FULL- CHANGE TAPES'
RETURN

ELSE
IDR=IDR+l
DR=CHAR(IDR+64)
TFILE(l:l)=DR
GOTO 305

ENDIF
ENDIF

WRT=.FALSE.
WRB=l
WRBL=l
WRTCNT=0

CALL SETCUR(19,0)
WRITE(*,' (A\)') 'HIT ANY KEY TO START'
CALL CLRLIN(24)
CALL STARTAD(IITY,FF,BUFST,BUFT,BUFFCNT,MAXB,ADCURB,DONE,INDEX)

C CALULATE ADDRESSES FOR BYTE MOVES
DO 310 I=l,15
BSTRT(I)=INDEX+(I-1)*8192+1
IF(I .EQ. l)BSTRT(I)=BSTRT(I)-1
CALL IVARPT(IBUF(BSTRT(I)),ADDRF(I))
ADDRF(I)=ADDRF(I)-1
CALL IVARPT(IBUF(BSTRT(I)+NCHAN*NPTS),ADDRL(I))
ADDRL(I)=ADDRL(I)-1

310 CONTINUE

CALL SETCUR(l9,15)
WRITE(*, 1 (A\)') 'STOP '
CALL SETCUR(20,0)
CALL KCLEAR
IF(IITY .EQ. l)THEN
WRITE(*, '(A\)') 'ELAPSED TIME='
CALL GCUR(IR,IC)
ELSE
WRITE(*, '(A\)') 'ELAPSED DISTANCE'
CALL GCUR(IR,IC)
ENDIF

2B6

400 IF (DONE .NE. 0)GOTO 600

C CHECK FOR WRITE
IF (WRT)THEN

IF(BUFST(WRB) .EQ. -l)THEN
J=IPEEKB(ADDRF(WRB))
CALL IPOKEB(J,ADDRL(WRBL))
CALL HWRITE(HANDLE,IBUF(BSTRT(WRBL)),BYTES,RBYTES,IER)
BUFST(WRBL)=0
WRTCNT=WRTCNT+l
IF(WRTCNT .EQ. l)THEN

BSTRT (1) =BSTRT (1 l +1 .
CALL IVARPT(IBUF(BSTRT(l)),ADDRF(l))
ADDRF(l)=ADDRF(l)-1
CALL IVARPT(IBUF(BSTRT(l)+NCHAN*NPTS),ADDRL(l))
ADDRL(l)=ADDRL(l)-1
BUFT(l)-BUFT(l)+l

ENDIF
WRBL=WRB
WRB=WRB+l
IF(WRB .GT. 15)WRB=l

ENDIF
ELSE

IF(BUFST(WRB) .EQ. -l)THEN
WRB=WRB+l
WRT=.TRUE.
CALL ADDNUL(TFILE,16)
CALL HCREAT (TFILE, HANDLE, IER)
CALL SUBNUL(TFILE,16)
IF(IER .NE. 0)GOTO 5000

C RECORD SETUP
CALL HWRITE(HANDLE,SET,2048,RBYTES,IER)

ENDIF
ENDIF

· CALL SETCUR (IR, IC)
I=BUFFCNT
J=0
CALL IOUTB(0,12)
J=INPB (3)
K=INPB (3)
J=(M-IOR(J,ISHFTL(K,8)))/NCHAN/2
T=Tl*(J+I*NPTS)
WRITE(*,' (Fll.3\) ')T
IF(IGKEY() .EQ. 0)GOTO 400

600 I=IOR(INPB(t21),4)
CALL IOUTB(0,INTD)
CALL DTCLEAR
CALL SETCUR(21,0)
IF (DONE .EQ. 0)THEN
WRITE(*,9100)

9100 FORMAT('TEST TERMINATED BY OPERATOR'\)
ELSEIF (DONE .EQ. -l)THEN
WRITE (*, 9110)

9110 FORMAT('MAXIMUM TEST LENGTH REACHED'\)
ELSE
WRITE(*,9120)

287

9120 FORMAT('TEST TERMINATED BY BUFFER OVERFLOW POSSIBILITY'\)
ENDIF
CALL SETCUR(22,0)
WRITE(*,9000)

9000 FORMAT('RECORDING DATA'\)

IF (DONE .EQ. 0) THEN
J=0
CALL IOUTB(0,12)
J=INPB(3)
K=INPB (3)
J=(M-IOR(J,ISHFTL(K,8)))/NCHAN/2
PASSA=BUFFCNT*NPTS+J
IF(J .NE. 0)BUFFCNT=BUFFCNT+l

ELSE
PASSA=BUFFCNT*NPTS

ENDIF
IF (BUFFCNT .EQ. O).GOTO 900

C RECORD REST OF DATA
775 IF(WRTCNT .EQ. BUFFCNT)GOTO 800

IF(.NOT. WRT)THEN
WRT=.TRUE.
CALL ADDNUL(TFILE,16)
CALL HCREAT(TFILE,HANDLE,IER)
CALL SUBNUL(TFILE,16)
IF(IER .NE. 0)GOTO 5000

C RECORD SETUP
CALL HWRITE(HANDLE,SET,2048,RBYTES,IER)

ENDIF
J=IPEEKB(ADDRF(WRB))
CALL IPOKEB(J,ADDRL(WRBL))
CALL HWRITE(HANDLE,IBUF(BSTRT(WRBL)),BYTES,RBYTES,IER)
BUFST(WRBL)=0
WRTCNT=WRTCNT+l
WRBL=WRB
WRB=WRB+l
IF(WRB .GT. 15)WRB=l
GOTO 775

800 CONTINUE
PASSA=PASSA-1

C CHECK TO SEE IF EXTRA ROOM IS NEEDED
EXBUFi=0
NRSAMP=(PASSA-1)/TRIM
NRUTFW=NRSAMP*NCHRUT
NRAWFW=NCHAN*PASSA/2 +2+.5
MAXBUFeNRAWFW+NRUTFW
IF(MAXBUF .GT. MXBFSZ)EXBUF=l6

IF(EXBUF .NE. 0)THEN
C WRITE 16 BUFFERS TO END

BYTES=l6384
DO 840 I=l,16
CALL HWRITE(HANDLE,IBUF(l),BYTES,RBYTES,IER)

840 CONTINUE
ENDIF

288

C POSITION TAPE BACK TO BEGINNING
METHOD=0
IO•0
CALL HPOS(HANDLE,METHOD,IO,IP,IER)

C RECORD SETUP
CALL HWRITE(HANDLE,SET,2048,RBYTES,IER)

C CLOSE FILE
CALL HCLOSE(HANDLE,IER)

C FLUSH DIRECTORY BUFFERS
CALL TAPE(3,4,ISTAT)

900 IF(IITY .EQ. l)RETURN
CALL WAITKY
RETURN

5000 CALL INERROR('FILE ERROR',10)
CALL WAITKY
RETURN
END

289

TSTDIS.FOR

$TITLE: 'TEST DISPLAY'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE TSTDIS
**
* This subroutine displays information about the data in .a file
* using infromation from the SETCOM header block.
* If PASSA < 1, file is taken from TFILE and the bottom half of the
* screen is left blank. If PASSA > 0, then it is an existing data
* and extra information is whown in the bottom. 1/2 of the screen.

$INCLUDE:'STATCOM'
$INCLUDE:'SETCOM'

CHARACTER*! DR
CHARACTER*B FN
CHARACTER*3 EXT
CHARACTER*l0 STRl, STR2, STR3
INTEGER*2 IPTR(8)

CALL WRTSCR('TSTSCR. ')
C DECODE FILENAME

IF (PASSA .LE. 0) THEN
CALL FNMAKE(DR,FN,EXT,TFILE,l)

ELSE
CALL FNMAKE(DR,FN,EXT,PFILE,l)

END IF
CALL SETCUR(S,10)
WRITE(*,8900)DR,FN,EXT

8900 FORMAT(Al, ':',AS, '.',A3\)

C WRITE DATE AND TIME

CALL SETCUR(l,5)
WRITE(*,9000)IM,IDAY,IYR

9000 FORMAT(I2, '-',I2, '-',I4\)
CALL SETCUR(2,5)
WRITE(*,9010)IH,IMIN,ISEC

9010 FORMAT (12, ': ', I2, ': ', 12\)

C WRITE CONFIGURATION
CALL SETCUR(3,15)
WRITE(*,' (A\) ')TSTCON

C WRITE COMMENT
CALL SETCUR (6, 9)
WRITE (*, I (A\) I) CMT

C WRITE ROUTE
CALL SETCUR(S,7)
WRITE(*,' (A\) ')ROUTE

C WRITE DIRECTION
CALL SETCUR(9,10)

290

WRITE(*,' (A\) ')DIRECT

C WRITE LANE
CALL SETCUR(l0,5)
WRITE (*, ' (A\) ') LANE

C WRITE SURFACE
CALL SETCUR(ll,13)
WRITE(*,' (A\) ')SURF

C WRITE TEST SPEED ·
CALL SETCUR(8,52)
WRITE(*,' (I2\) ')TSTSPD

C WRITE MAXIMUM TEST LENGTH
CALL SETCUR(9,60)
WRITE(*,' (F4.l\) ')MAXLEN

C WRITE SAMPLES PER FOOT
CALL SETCUR(l0,57)
WRITE(*,' (F4.2\l ')SAMP

C WRITE OPERATOR
CALL SETCUR(ll,49)
WRITE(*,' (A\) ')OPER

* Quit now if PASSA < 1 (since this is during test setup)

IF (PASSA .LE. 0) RETURN

* Write status of file (raw, bounce, etc.)

XLEN = PASSA * DELTAX
Ll = 10
CALL STRX (XLEN, STRl, Ll)

XLEN = PASSA * IDIV * .4190477E-06
L2 = 10
CALL STRX (XLEN, STR2, L2)

XLEN = NPSTOT * DELTAX
L3 = 10
CALL STRX (XLEN, STR3, L3)

CALL SETCUR (13,0)
IF (TSTTYP .EQ. 0) THEN

WRITE (*, I (A, A, A\) I)

& 'Road data that have not been checked or processed.',
& Length - ', STRl(:Ll)

ELSE IF (TSTTYP .EQ. 1) THEN
WRITE (*, I (A, A, A\ I I)

& 'Raw data from bounce test.',
& Time=', STR2(:L2)

ELSE IF (TSTTYP .EQ. 2) THEN
WRITE (*, I (A,A,A\) ')

& 'Processed profile/rut-depth/roughness data.',
& Length= ', STR3(:L3)

ELSE IF (TSTTYP .EQ. 3) THEN

291

WRITE (*,' (A,A,A\) ')
& 'Raw data from road teat that have been checked.',
& Length=', STRl(:Ll)

ELSE IF (TSTTYP .EQ. 4) THEN
WRITE (*, '(A,A,A\) ')

& 'Raw data that cannot be processed due to low speed.',
& Length= ', STRl(:Ll)

ELSE IF (TSTTYP .EQ. 5) THEN
WRITE (*, ' (A, A, A\) ')

& 'Raw data from bounce test that have been checked.',
& Time= ', STR2(:L2)

ELSE IF (TSTTYP .EQ. 6) THEN_
WRITE (*, I (A,A,A\) ')

& 'Processed data from bounce teat.',
& Time= ', STR2(:L2)

ELSE IF (TSTTYP .EQ. 7) THEN
WRITE (*,' (A\) I)

& 'This file was damaged during data processing and is ruined.'
END IF

* If that data were checked, print the findings.

9050

IF (TSTTYP .GT. 1) THEN
L = ADSTRT
DO 5 ICH = 1, NCHAN

IPTR (ICH) = L + 1
L = L + 1
IF (L .GT. 7) L = 0

5 CONTINUE

&

&

DO 10 ICH = l,NCHAN
CALL SETCUR (13 + ICH, 0)
IF (NSAT (ICH) .EQ. 0) THEN

WRITE (*,'(A,'' SIGNAL WAS OK.''\)') CHID (IPTR(ICH))
ELSE

WRITE (*, 9050) CHID (IPTR(ICH)), NSAT (ICH),
LSAT (ICH) * DELTAX

FORMAT (A, 1 WAS QUESTIONABLE',I5,' TIME(S), 1ST AT X=',
F9.2\)

END IF
10 CONTINUE

IF (ICHV .GT. 0) THEN
CALL SETCUR (22,0)
WRITE (*,9060) VELMIN,VELMAX,UNITS(3)

9060 FORMAT ('SPEED RANGE DURING TEST: ',F6.2,' TO',F6.2,1X,A\)
END IF

END IF

**
* Set some of the things in common that were not set in early versions
* of the test program. (This code should be removed someday.)

IF (TSTTYP .EQ. 1 .OR. TSTTYP .EQ. 5 .OR. TSTTYP .EQ. 6) THEN
CHID (10) = 'TIME'
CHID (11) = 'TOT AXLE'
UNITS (10) = 'SECONDS'
UNITS (11) = 'IN'
SCLFRI = 1.

ELSE

292_

SCLFRI = 5280.
CHIO (10) • 'DISTANCE'
CHIO (11) .., 'IRI'
UNITS (10) 'FEET'
UNITS (11) = 'IN/MI'

END IF
HlLAT • 1.
H2LAT.., 1.
H4LAT = 1.
H5LAT = 1.

* <End patch>
**

RETURN
END

29ll

UNLOADTP.FOR

$STORAGE:2
$NOFLOATCALLS

SUBROUTINE UNLDT

$INCLUDE: I BUFCOM I .

$INCLUDE:'STATCOM'
$INCLUDE:'SETCOM'

INTEGER*2 ISTAT(3)
CHARACTER*l6 FN
FN='D:NAME.VOL

C MAKE SURE TAPE IS TO BE UNLOADED
CALL SETCUR(0,0)

C IF NO TAPE IS LOADED - EXIT
IF(TINIT.EQ. 0)THEN
WRITE(*,' (A\)') 'NO TAPE IS LOADED'
GOTO 1000
ENDIF

WRITE(*, '(A\)') 'ARE YOU SURE YOU WANT THE TAPE UNLOADED?'
CALL SETCUR(0,41) '
I=0
CALL YESNO(I,0,41,IRET)
IF(I .EQ. 0)GOTO 1000

C UPDATE VOLUME INFO

LFILE=TFILE
I=IYR-1900
WRITE(TLDATE,9000)IM,IDAY,I

9 0 0 0 FORMAT (I2, ' - ', I2, ' - ', I2)
WRITE(TLTIME,9010)IH,IMIN,ISEC

9010 FORMAT (I2, ': ', I2, ': ', 12)

C WRITE NEW INFO TO FILE D:NAME.VOL
OPEN (9, FILE■=FN)

WRITE (9, 8000) TVOL, (IBUF (I), I=l, 100)
8000 FORMAT(A56,100I7)

CLOSE (9)
C FLUSH BUFFERS

CALL TAPE(3,4,ISTAT)

C UNLOAD TAPE
CALL TAPE(l2,4,ISTAT)
TINIT=0

1000 CALL WAITKY
RETURN
END

C
C READ FILE AND WRITE A SCREEN
C FIRST LINE NLINES=NUMBER OF LINES
C SUBSEQUENT LINES= ROW,COL,STRING
C

WRTSCR.FOR

$TITLE:'WRITE DISPLAY'
$STORAGE:2
$NOFLOATCALLS

SUBROUTINE. WRTSCR(FNAME)

CHARACTER*l2 FNAME
CHARACTER*B0 STRING
CHARACTER*l STR(B0)
INTEGER*2 ROW,COL
EQUIVALENCE(STRING,STR)

C CLEAR THE SCREEN
CALL CLRSCR

C OPEN THE FILE AND GET THE NUMBER OF STRINGS

OPEN(9,FILE=FNAME)
READ(9,' (I4) ')NUMSTR

C READ THE STRINGS AND WRITE THEM TO THE SCREEN

DO 100 I=l,NUMSTR
READ(9,9000)ROW,COL,STRING

9000 FORMAT(I4,I4,A80)
CALL HOWLNG(STRING,80,NCHAR)

DO 50 J=l,NCHAR
CALL SETCUR(ROW,COL)
CALL PCHAR(STR(J),7,1)

50 COL=COL+l
100 CONTINUE

RETURN
END

295

REFERENCES
[1] T. D. Gillespie, M.W. Sayers, and M. R. Hagan, "Methodology for Road

Roughness Profiling and Rut Depth Measurement." FHW A Report FHW A/RD-
87/042, July 1987.

[2] M. W. Sayers, T. D. Gillespie, and M. R. Hagan, "User's Manual for the
UMTRI/FHWA Road Profiling (PRORUT) System." FHWA Report FHWAIRD-
87/043, July 1987.

[3] M. W. Sayers, and T. D. Gillespie, "The Ann Arbor Road Profilometer Meeting."
FHW A Report No. FHW A/RD-86/100, July 1986, 226 pp.

[4] J. D. King and S. A. Cerwin, "System for Inventorying Road Surface Topography
(SIRST)." Southwest Research Institute, Report No. FHW A/RD-82/062, August
1982, 269 pp.

[5] J. D. Campbell and M. W. Sayers, "An Infrared Distance Sensor, Analysis and Test
Results." The University of Michigan Transportation Research Institute, Report No.
UMTRI-84-14, March 1984, 114 pp.

Hil "Precision Non-Contact Measurement is Simpler than You Think," Available from
Selective Electronic Inc., P.O. Box 100, Valdese, N.C. 28690.

[7] E. Spangler and W. Kelly, "GMR Road Profilometer-A Method for Measuring
Road Profile." HRR121, Highway Research Board, 1966.

[8] M. W. Sayers, T. D. Gillespie, and W. D. 0. Paterson, "Guidelines for the Conduct
and Calibration of Road Roughness Measurements." Technical report No. 46, The
World Bank, Washington D.C., January 1986, 87 pp.

296

i:-u.s. COVERNr,,Er-.iT PRINTING orrICE:151B8-516-CIH!:B0276

JFJE[])JEJRAJLIL Y COOJRlDlITNA 1I'JE][]) !P'JROGIRAM (lFClP') OlF lHIITGlHIWA Y lRlE§lEAJRClHI,
IDilEVlEJLOlP'MlENT, AN][]) 1I'lECIHINOILOGY

The Offices of Research, Development, and
Technology (RD&T) of the Federal Highway
Administration (FHW A) are responsible for a broad
research, development, and technology transfer pro
gram. This program is accomplished using numerous
methods of funding and management. The efforts
include work done in-house by RD&T staff, con
tracts using administrative funds, and a Federal-aid
program conducted by or through State highway or
transportation agencies, which include the Highway
Planning and Research (HP&R) program, the Na
tional Cooperative Highway Research Program
(NCHRP) managed by the Transportation Research
Board, and the one-half of one percent training pro
gram conducted by the National Highway Institute.

The FCP is a carefully selected group of projects,
separated into broad categories, formulated to use
research, development, and technology transfer
resources to obtain solutions to urgent national
highway problems.

The diagonal double stripe on the cover of this report
· represents a highway. It is color-coded to identify

the FCP category to which the report's subject per
tains. A red stripe indicates category 1, dark blue
for category 2, light blue for category 3, brown for
category 4, gray for category 5, and green for
category 9.

FCP Category Descriptions
JI • IH!ngllll'W!llY][])esug11 !lllllil 1[])111er!ll!UOII for §1nfeUy

Safety RD&T addresses problems associated
with the responsibilities of the FHW A under the
Highway Safety Act. It includes investigation of
appropriate design standards, roadside hard
ware, traffic control devices, and collection or
analysis of physical and scientific data for the
formulation of improved safety regulations to
better protect all motorists, bicycles, and
pedestrians.

2 . ll'ramc Ccmtrnl alllllil M!111111Jgeme11t
Traffic RD&T is concerned with increasing the
operational efficiency of existing highways by
advancing technology and balancing the
demand-capacity relationship through traffic
management techniques such as bus and carpool
preferential treatment, coordinated signal tim
ing, motorist information, and rerouting of
traffic.

3 . 1Hliglhi-w1ny l(])per1nltio11s
This category addresses preserving the Nation's
highways, natural resources, and community
attributes. It includes activities in physical

maintenance, traffic services for maintenance
zoning, management of human resources and
equipment, and identification of highway
elements that affdct the quality of the human en
vironment. The ,goals of projects within this
category are to maximize operational efficiency
and safety to the traveling public while conserv
ing resources and, reducing adverse highway and
traffic impacts through protections and enhance
ment of environmental features.

41. lP'nemenl][])esigllll, CollllsUrncttiollll, mmll
Mlllll!llgemellll[
Pavement RD&T is concerned with pavement
design and rehabilititation methods and pro
cedures, construction technology, recycled
highway materials, improved pavement binders,
and improved pavement management. The goals
will emphasize improvements to highway
performance ove,r the network's life cycle, thus
extending maintenance-free operation and max
imizing benefits. Specific areas of effort will in
clude material . characterizations, pavement
damage predictions, methods to minimize local
pavement defects, quality control specifications,
long-term pavement monitoring, and life cycle
cost analyses.

5. §rrrnclunrall][])esigiu i;iml IHiyillri;iunlks

Structural RD&T is concerned with furthering the
latest technological advances in structural and
hydraulic designs, fabrication processes, and con
struction techniques to provide safe, efficient
highway structures at reasonable costs. This
category deals with bridge superstructures, earth
structures, foundations, culverts, river
mechanics, and hydraulics. In addition, it in
cludes material aspects of structures (metal and
concrete) along with their protection from cor
rosive or degrading environments.

9. IRIDl&ll' M!ll11!llgiemellllU imirll C1111rirllfi1111Jlollllll

Activities in this category include fundamental
work for new concepts and system character
ization before the investigation reaches a point
where it is incorporated within other categories
of the FCP. Concepts on the feasibility of new
technology for highway safety are included in this
category. RD&l1 reports not within other FCP
projects will be p,ublished as Category 9 projects.

/

HNR-20/3-88{120)QE

